mmselfsup/docs/en/install.md

201 lines
7.2 KiB
Markdown
Raw Normal View History

2021-12-15 19:06:36 +08:00
# Installation
## Requirements
- Linux (Windows is not officially supported)
- Python 3.6+
- PyTorch 1.5+
- CUDA 9.2+
- GCC 5+
- [mmcv](https://github.com/open-mmlab/mmcv) 1.3.16+
Bump version to v0.6.0 (#199) * [Feature] Add MoCo v3 (#194) * [Feature] add position embedding function * [Fature] modify nonlinear neck for vit backbone * [Feature] add mocov3 head * [Feature] modify cls_head for vit backbone * [Feature] add ViT backbone * [Feature] add mocov3 algorithm * [Docs] revise BYOL hook docstring * [Feature] add mocov3 vit small config files * [Feature] add mocov3 vit small linear eval config files * [Fix] solve conflict * [Fix] add mmcls * [Fix] fix docstring format * [Fix] fix isort * [Fix] add mmcls to runtime requirements * [Feature] remove duplicated codes * [Feature] add mocov3 related unit test * [Feature] revise position embedding function * [Feature] add UT codes * [Docs] add README.md * [Docs] add model links and results to model zoo * [Docs] fix model links * [Docs] add metafile * [Docs] modify install.md and add mmcls requirements * [Docs] modify description * [Fix] using specific arch name `mocov3-small` rather than general arch name `small` * [Fix] add mmcls * [Fix] fix arch name * [Feature] change name to `MoCoV3` * [Fix] fix unit test bug * [Feature] change `BYOLHook` name to `MomentumUpdateHook` * [Feature] change name to MoCoV3 * [Docs] modify description Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> * [Docs] update model zoo results (#195) * Bump version to v0.6.0 (#198) * [Docs] update model zoo results * Bump version to v0.6.0 Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com>
2022-02-02 11:16:06 +08:00
- [mmcls](https://mmclassification.readthedocs.io/en/latest/install.html) 0.19.0+
- [mmdet](https://mmdetection.readthedocs.io/en/latest/get_started.html#installation) 2.16.0+
- [mmseg](https://mmsegmentation.readthedocs.io/en/latest/get_started.html#installation) 0.20.2+
2021-12-15 19:06:36 +08:00
Bump version to v0.6.0 (#199) * [Feature] Add MoCo v3 (#194) * [Feature] add position embedding function * [Fature] modify nonlinear neck for vit backbone * [Feature] add mocov3 head * [Feature] modify cls_head for vit backbone * [Feature] add ViT backbone * [Feature] add mocov3 algorithm * [Docs] revise BYOL hook docstring * [Feature] add mocov3 vit small config files * [Feature] add mocov3 vit small linear eval config files * [Fix] solve conflict * [Fix] add mmcls * [Fix] fix docstring format * [Fix] fix isort * [Fix] add mmcls to runtime requirements * [Feature] remove duplicated codes * [Feature] add mocov3 related unit test * [Feature] revise position embedding function * [Feature] add UT codes * [Docs] add README.md * [Docs] add model links and results to model zoo * [Docs] fix model links * [Docs] add metafile * [Docs] modify install.md and add mmcls requirements * [Docs] modify description * [Fix] using specific arch name `mocov3-small` rather than general arch name `small` * [Fix] add mmcls * [Fix] fix arch name * [Feature] change name to `MoCoV3` * [Fix] fix unit test bug * [Feature] change `BYOLHook` name to `MomentumUpdateHook` * [Feature] change name to MoCoV3 * [Docs] modify description Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> * [Docs] update model zoo results (#195) * Bump version to v0.6.0 (#198) * [Docs] update model zoo results * Bump version to v0.6.0 Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com>
2022-02-02 11:16:06 +08:00
Compatible MMCV, MMClassification, MMDetection and MMSegmentation versions are shown below. Please install the correct version of them to avoid installation issues.
2021-12-15 19:06:36 +08:00
| MMSelfSup version | MMCV version | MMClassification version | MMSegmentation version | MMDetection version |
| :---------------: | :-----------------: | :------------------------: | :--------------------: | :-----------------: |
Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
| 0.8.0 (master) | mmcv-full >= 1.3.16 | mmcls >= 0.21.0 | mmseg >= 0.20.2 | mmdet >= 2.16.0 |
| 0.7.1 | mmcv-full >= 1.3.16 | mmcls >= 0.19.0, <= 0.20.1 | mmseg >= 0.20.2 | mmdet >= 2.16.0 |
| 0.6.0 | mmcv-full >= 1.3.16 | mmcls >= 0.19.0 | mmseg >= 0.20.2 | mmdet >= 2.16.0 |
| 0.5.0 | mmcv-full >= 1.3.16 | / | mmseg >= 0.20.2 | mmdet >= 2.16.0 |
2021-12-15 19:06:36 +08:00
Bump version to v0.6.0 (#199) * [Feature] Add MoCo v3 (#194) * [Feature] add position embedding function * [Fature] modify nonlinear neck for vit backbone * [Feature] add mocov3 head * [Feature] modify cls_head for vit backbone * [Feature] add ViT backbone * [Feature] add mocov3 algorithm * [Docs] revise BYOL hook docstring * [Feature] add mocov3 vit small config files * [Feature] add mocov3 vit small linear eval config files * [Fix] solve conflict * [Fix] add mmcls * [Fix] fix docstring format * [Fix] fix isort * [Fix] add mmcls to runtime requirements * [Feature] remove duplicated codes * [Feature] add mocov3 related unit test * [Feature] revise position embedding function * [Feature] add UT codes * [Docs] add README.md * [Docs] add model links and results to model zoo * [Docs] fix model links * [Docs] add metafile * [Docs] modify install.md and add mmcls requirements * [Docs] modify description * [Fix] using specific arch name `mocov3-small` rather than general arch name `small` * [Fix] add mmcls * [Fix] fix arch name * [Feature] change name to `MoCoV3` * [Fix] fix unit test bug * [Feature] change `BYOLHook` name to `MomentumUpdateHook` * [Feature] change name to MoCoV3 * [Docs] modify description Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> * [Docs] update model zoo results (#195) * Bump version to v0.6.0 (#198) * [Docs] update model zoo results * Bump version to v0.6.0 Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com>
2022-02-02 11:16:06 +08:00
**Note:**
- You need to run `pip uninstall mmcv` first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be `ModuleNotFoundError`.
- As MMSelfSup imports some backbones from MMClassification, you need to install MMClassification before using MMSelfSup.
- If you don't run MMDetection and MMSegmentation benchmark, it is unnecessary to install them.
2021-12-15 19:06:36 +08:00
## Prepare environment
1. Create a conda virtual environment and activate it.
```shell
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
```
2. Install PyTorch and torchvision following the [official instructions](https://pytorch.org/), e.g.,
```shell
conda install pytorch torchvision -c pytorch
```
Make sure that your compilation CUDA version and runtime CUDA version match. You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
`E.g.1` If you have CUDA 10.1 installed under `/usr/local/cuda` and would like to install PyTorch 1.7, you need to install the prebuilt PyTorch with CUDA 10.1.
```shell
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1 -c pytorch
```
If you build PyTorch from source instead of installing the prebuilt package, you can use more CUDA versions such as 9.0.
## Install MMSelfSup
Bump version to v0.6.0 (#199) * [Feature] Add MoCo v3 (#194) * [Feature] add position embedding function * [Fature] modify nonlinear neck for vit backbone * [Feature] add mocov3 head * [Feature] modify cls_head for vit backbone * [Feature] add ViT backbone * [Feature] add mocov3 algorithm * [Docs] revise BYOL hook docstring * [Feature] add mocov3 vit small config files * [Feature] add mocov3 vit small linear eval config files * [Fix] solve conflict * [Fix] add mmcls * [Fix] fix docstring format * [Fix] fix isort * [Fix] add mmcls to runtime requirements * [Feature] remove duplicated codes * [Feature] add mocov3 related unit test * [Feature] revise position embedding function * [Feature] add UT codes * [Docs] add README.md * [Docs] add model links and results to model zoo * [Docs] fix model links * [Docs] add metafile * [Docs] modify install.md and add mmcls requirements * [Docs] modify description * [Fix] using specific arch name `mocov3-small` rather than general arch name `small` * [Fix] add mmcls * [Fix] fix arch name * [Feature] change name to `MoCoV3` * [Fix] fix unit test bug * [Feature] change `BYOLHook` name to `MomentumUpdateHook` * [Feature] change name to MoCoV3 * [Docs] modify description Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> * [Docs] update model zoo results (#195) * Bump version to v0.6.0 (#198) * [Docs] update model zoo results * Bump version to v0.6.0 Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com>
2022-02-02 11:16:06 +08:00
1. Install MMCV and MMClassification
2021-12-15 19:06:36 +08:00
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```
Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example, to install the latest `mmcv-full` with `CUDA 11.0` and `PyTorch 1.7.x`, use the following command:
2021-12-15 19:06:36 +08:00
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7/index.html
2021-12-15 19:06:36 +08:00
```
- mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.
2021-12-15 19:06:36 +08:00
See [here](https://github.com/open-mmlab/mmcv#installation) for different versions of MMCV compatible to different PyTorch and CUDA versions.
Optionally you can compile mmcv from source if you need to develop both mmcv and mmselfsup. Refer to the [guide](https://github.com/open-mmlab/mmcv#installation) for details.
Bump version to v0.6.0 (#199) * [Feature] Add MoCo v3 (#194) * [Feature] add position embedding function * [Fature] modify nonlinear neck for vit backbone * [Feature] add mocov3 head * [Feature] modify cls_head for vit backbone * [Feature] add ViT backbone * [Feature] add mocov3 algorithm * [Docs] revise BYOL hook docstring * [Feature] add mocov3 vit small config files * [Feature] add mocov3 vit small linear eval config files * [Fix] solve conflict * [Fix] add mmcls * [Fix] fix docstring format * [Fix] fix isort * [Fix] add mmcls to runtime requirements * [Feature] remove duplicated codes * [Feature] add mocov3 related unit test * [Feature] revise position embedding function * [Feature] add UT codes * [Docs] add README.md * [Docs] add model links and results to model zoo * [Docs] fix model links * [Docs] add metafile * [Docs] modify install.md and add mmcls requirements * [Docs] modify description * [Fix] using specific arch name `mocov3-small` rather than general arch name `small` * [Fix] add mmcls * [Fix] fix arch name * [Feature] change name to `MoCoV3` * [Fix] fix unit test bug * [Feature] change `BYOLHook` name to `MomentumUpdateHook` * [Feature] change name to MoCoV3 * [Docs] modify description Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> * [Docs] update model zoo results (#195) * Bump version to v0.6.0 (#198) * [Docs] update model zoo results * Bump version to v0.6.0 Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com>
2022-02-02 11:16:06 +08:00
You can simply install MMClassification with the following command:
```shell
pip install mmcls
```
2. Clone MMSelfSup repository and install
```shell
git clone https://github.com/open-mmlab/mmselfsup.git
cd mmselfsup
pip install -v -e .
```
**Note:**
- When specifying `-e` or `develop`, MMSelfSup is installed on dev mode, any local modifications made to the code will take effect without reinstallation.
3. Install MMSegmentation and MMDetection
2021-12-15 19:06:36 +08:00
You can simply install MMSegmentation and MMDetection with the following command:
```shell
pip install mmsegmentation mmdet
```
In addition to installing MMSegmentation and MMDetection by pip, user can also install them by [mim](https://github.com/open-mmlab/mim).
```shell
pip install openmim
mim install mmdet
mim install mmsegmentation
```
## A from-scratch setup script
Here is a full script for setting up mmselfsup with conda.
```shell
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install -c pytorch pytorch torchvision -y
# install the latest mmcv
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html
# install mmdetection mmsegmentation
pip install mmsegmentation mmdet
git clone https://github.com/open-mmlab/mmselfsup.git
cd mmselfsup
pip install -v -e .
```
## Another option: Docker Image
We provide a [Dockerfile](/docker/Dockerfile) to build an image.
```shell
# build an image with PyTorch 1.6.0, CUDA 10.1, CUDNN 7.
docker build -f ./docker/Dockerfile --rm -t mmselfsup:torch1.10.0-cuda11.3-cudnn8 .
```
**Important:** Make sure you've installed the [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker).
Run the following cmd:
```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/workspace/mmselfsup/data mmselfsup:torch1.10.0-cuda11.3-cudnn8 /bin/bash
```
`{DATA_DIR}` is your local folder containing all these datasets.
## Verification
To verify whether MMSelfSup is installed correctly, we can run the following sample code to initialize a model and inference a demo image.
```py
import torch
from mmselfsup.models import build_algorithm
model_config = dict(
type='Classification',
backbone=dict(
type='ResNet',
depth=50,
in_channels=3,
num_stages=4,
strides=(1, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'),
frozen_stages=-1),
head=dict(
type='ClsHead', with_avg_pool=True, in_channels=2048,
num_classes=1000))
model = build_algorithm(model_config).cuda()
image = torch.randn((1, 3, 224, 224)).cuda()
label = torch.tensor([1]).cuda()
loss = model.forward_train(image, label)
```
The above code is supposed to run successfully upon you finish the installation.
## Using multiple MMSelfSup versions
If there are more than one mmselfsup on your machine, and you want to use them alternatively, the recommended way is to create multiple conda environments and use different environments for different versions.
Another way is to insert the following code to the main scripts (`train.py`, `test.py` or any other scripts you run)
```python
import os.path as osp
import sys
sys.path.insert(0, osp.join(osp.dirname(osp.abspath(__file__)), '../'))
```
Or run the following command in the terminal of corresponding root folder to temporally use the current one.
```shell
export PYTHONPATH="$(pwd)":$PYTHONPATH
```