62 lines
1.8 KiB
Markdown
Raw Normal View History

# 约定
- [约定](#约定)
- [损失](#损失)
如果您想将 MMSelfSup 修改为您自己的项目, 请检查以下约定。
## 损失
当算法实现时, 函数 `loss` 返回的损失应该是 `dict` 类型。
举个 `MAE` 的例子:
```python
class MAE(BaseModel):
"""MAE.
Implementation of `Masked Autoencoders Are Scalable Vision Learners
<https://arxiv.org/abs/2111.06377>`_.
"""
def extract_feat(self, inputs: List[torch.Tensor],
**kwarg) -> Tuple[torch.Tensor]:
...
def loss(self, inputs: List[torch.Tensor],
data_samples: List[SelfSupDataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (List[torch.Tensor]): The input images.
data_samples (List[SelfSupDataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
# ids_restore: the same as that in original repo, which is used
# to recover the original order of tokens in decoder.
latent, mask, ids_restore = self.backbone(inputs[0])
pred = self.neck(latent, ids_restore)
loss = self.head(pred, inputs[0], mask)
losses = dict(loss=loss)
return losses
```
`MAE` 模型正向传播期间, 这个 `MAE.loss()` 函数将被调用用于计算损失并返回这个损失值。
默认情况下, 只有 `dict` 中的键包含的 `loss` 值时, 才会进行反向传播, 如果你的算法需要多个损失值, 你可以用多个键打包损失字典。
```python
class YourAlgorithm(BaseModel):
def loss():
...
losses['loss_1'] = loss_1
losses['loss_2'] = loss_2
```