Update MODEL_ZOO.md

pull/16/head
Xiaohang Zhan 2020-07-11 20:20:04 +08:00 committed by GitHub
parent c7fa6b6eee
commit 0f10f4cd33
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 1 additions and 1 deletions

View File

@ -113,7 +113,7 @@
* ImageNet (Multi) evaluates features in around 9k dimensions from different layers. Top-1 result of the last epoch is reported.
* ImageNet (Last) evaluates the last feature after global average pooling, e.g., 2048 dimensions for resnet50. The best top-1 result among all epochs is reported.
<table><thead><tr><th rowspan="2">Method</th><th rowspan="2">Config</th><th rowspan="2">Remarks</th><th colspan="5">ImageNet (Multi)</th><th>ImageNet (Last)</th></tr><tr><td>feat1</td><td>feat2</td><td>feat3</td><td>feat4</td><td>feat5</td><td>avgpool</td></tr></thead><tbody><tr><td><a href="https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py" target="_blank" rel="noopener noreferrer">ImageNet</a></td><td>-</td><td>torchvision</td><td>15.18</td><td>33.96</td><td>47.86</td><td>67.56</td><td>76.17</td><td>74.12</td></tr><tr><td>Random</td><td>-</td><td>kaiming</td><td></td><td></td><td></td><td></td><td></td><td>4.35</td></tr><tr><td><a href="https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.pdf" target="_blank" rel="noopener noreferrer">Relative-Loc</a></td><td>selfsup/relative_loc/r50.py</td><td>default</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td><a href="https://arxiv.org/abs/1803.07728" target="_blank" rel="noopener noreferrer">Rotation-Pred</a></td><td>selfsup/rotation_pred/r50.py</td><td>default</td><td>12.89</td><td>34.30</td><td>44.91</td><td>54.99</td><td>49.09</td><td>47.01</td></tr><tr><td><a href="https://arxiv.org/abs/1807.05520" target="_blank" rel="noopener noreferrer">DeepCluster</a></td><td>selfsup/deepcluster/r50.py</td><td>default</td><td>12.78</td><td>30.81</td><td>43.88</td><td>57.71</td><td>51.68</td><td>46.92</td></tr><tr><td><a href="https://arxiv.org/abs/1805.01978" target="_blank" rel="noopener noreferrer">NPID</a></td><td>selfsup/npid/r50.py</td><td>default</td><td>14.28</td><td>31.20</td><td>40.68</td><td>54.46</td><td>56.61</td><td>56.60</td></tr><tr><td><a href="http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhan_Online_Deep_Clustering_for_Unsupervised_Representation_Learning_CVPR_2020_paper.pdf" target="_blank" rel="noopener noreferrer">ODC</a></td><td>selfsup/odc/r50_v1.py</td><td>default</td><td>14.76</td><td>31.82</td><td>42.44</td><td>55.76</td><td>57.70</td><td>53.42</td></tr><tr><td><a href="https://arxiv.org/abs/1911.05722" target="_blank" rel="noopener noreferrer">MoCo</a></td><td>selfsup/moco/r50_v1.py</td><td>default</td><td>15.32</td><td>33.08</td><td>44.68</td><td>57.27</td><td>60.60</td><td>61.02</td></tr><tr><td><a href="https://arxiv.org/abs/2003.04297" target="_blank" rel="noopener noreferrer">MoCo v2</a></td><td>selfsup/moco/r50_v2.py</td><td>default</td><td>15.35</td><td>34.57</td><td>45.81</td><td>60.96</td><td>66.72</td><td>67.02</td></tr><tr><td></td><td>selfsup/moco/r50_v2_simclr_neck.py</td><td>-&gt; SimCLR neck<br></td><td>15.19</td><td>32.54</td><td>43.12</td><td>60.36</td><td>67.08</td><td></td></tr><tr><td><a href="https://arxiv.org/abs/2002.05709" target="_blank" rel="noopener noreferrer">SimCLR</a></td><td>selfsup/simclr/r50_bs256_ep200.py</td><td>default</td><td>17.09</td><td>31.37</td><td>41.38</td><td>54.35</td><td>61.57</td><td>60.06</td></tr><tr><td></td><td>selfsup/simclr/r50_bs256_ep200_mocov2_neck.py</td><td>-&gt; MoCo v2 neck</td><td>16.97</td><td>31.88</td><td>41.73</td><td>54.33</td><td>59.94</td><td>58.00</td></tr><tr><td><a href="https://arxiv.org/abs/2006.07733" target="_blank" rel="noopener noreferrer">BYOL</a></td><td>selfsup/byol/r50.py</td><td>default</td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>
<table><thead><tr><th rowspan="2">Method</th><th rowspan="2">Config</th><th rowspan="2">Remarks</th><th colspan="5">ImageNet (Multi)</th><th>ImageNet (Last)</th></tr><tr><td>feat1</td><td>feat2</td><td>feat3</td><td>feat4</td><td>feat5</td><td>avgpool</td></tr></thead><tbody><tr><td><a href="https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py" target="_blank" rel="noopener noreferrer">ImageNet</a></td><td>-</td><td>torchvision</td><td>15.18</td><td>33.96</td><td>47.86</td><td>67.56</td><td>76.17</td><td>74.12</td></tr><tr><td>Random</td><td>-</td><td>kaiming</td><td>11.37</td><td>16.21</td><td>13.47</td><td>9.07</td><td>6.54</td><td>4.35</td></tr><tr><td><a href="https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.pdf" target="_blank" rel="noopener noreferrer">Relative-Loc</a></td><td>selfsup/relative_loc/r50.py</td><td>default</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td><a href="https://arxiv.org/abs/1803.07728" target="_blank" rel="noopener noreferrer">Rotation-Pred</a></td><td>selfsup/rotation_pred/r50.py</td><td>default</td><td>12.89</td><td>34.30</td><td>44.91</td><td>54.99</td><td>49.09</td><td>47.01</td></tr><tr><td><a href="https://arxiv.org/abs/1807.05520" target="_blank" rel="noopener noreferrer">DeepCluster</a></td><td>selfsup/deepcluster/r50.py</td><td>default</td><td>12.78</td><td>30.81</td><td>43.88</td><td>57.71</td><td>51.68</td><td>46.92</td></tr><tr><td><a href="https://arxiv.org/abs/1805.01978" target="_blank" rel="noopener noreferrer">NPID</a></td><td>selfsup/npid/r50.py</td><td>default</td><td>14.28</td><td>31.20</td><td>40.68</td><td>54.46</td><td>56.61</td><td>56.60</td></tr><tr><td><a href="http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhan_Online_Deep_Clustering_for_Unsupervised_Representation_Learning_CVPR_2020_paper.pdf" target="_blank" rel="noopener noreferrer">ODC</a></td><td>selfsup/odc/r50_v1.py</td><td>default</td><td>14.76</td><td>31.82</td><td>42.44</td><td>55.76</td><td>57.70</td><td>53.42</td></tr><tr><td><a href="https://arxiv.org/abs/1911.05722" target="_blank" rel="noopener noreferrer">MoCo</a></td><td>selfsup/moco/r50_v1.py</td><td>default</td><td>15.32</td><td>33.08</td><td>44.68</td><td>57.27</td><td>60.60</td><td>61.02</td></tr><tr><td><a href="https://arxiv.org/abs/2003.04297" target="_blank" rel="noopener noreferrer">MoCo v2</a></td><td>selfsup/moco/r50_v2.py</td><td>default</td><td>15.35</td><td>34.57</td><td>45.81</td><td>60.96</td><td>66.72</td><td>67.02</td></tr><tr><td></td><td>selfsup/moco/r50_v2_simclr_neck.py</td><td>-&gt; SimCLR neck<br></td><td>15.19</td><td>32.54</td><td>43.12</td><td>60.36</td><td>67.08</td><td>65.39</td></tr><tr><td><a href="https://arxiv.org/abs/2002.05709" target="_blank" rel="noopener noreferrer">SimCLR</a></td><td>selfsup/simclr/r50_bs256_ep200.py</td><td>default</td><td>17.09</td><td>31.37</td><td>41.38</td><td>54.35</td><td>61.57</td><td>60.06</td></tr><tr><td></td><td>selfsup/simclr/r50_bs256_ep200_mocov2_neck.py</td><td>-&gt; MoCo v2 neck</td><td>16.97</td><td>31.88</td><td>41.73</td><td>54.33</td><td>59.94</td><td>58.00</td></tr><tr><td><a href="https://arxiv.org/abs/2006.07733" target="_blank" rel="noopener noreferrer">BYOL</a></td><td>selfsup/byol/r50.py</td><td>default</td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>
### Places205 Linear Classification