diff --git a/docs/MODEL_ZOO.md b/docs/MODEL_ZOO.md
index 1da22351..5e37ec88 100644
--- a/docs/MODEL_ZOO.md
+++ b/docs/MODEL_ZOO.md
@@ -5,13 +5,43 @@
* The testing GPUs are NVIDIA Tesla V100.
* Experiments with the same batch size are directly comparable in speed.
-
+
## Benchmarks
### VOC07 SVM & SVM Low-shot
-Method | Config | Remarks | Best layer | VOC07 SVM | VOC07 SVM Low-shot |
---|
1 | 2 | 4 | 8 | 16 | 32 | 64 | 96 |
ImageNet | - | torchvision | feat5 | 87.17 | 52.99 | 63.55 | 73.7 | 78.79 | 81.76 | 83.75 | 85.18 | 85.97 |
Random | - | kaiming | feat2 | 30.54 | 9.15 | 9.39 | 11.09 | 12.3 | 14.3 | 17.41 | 21.32 | 23.77 |
Relative-Loc | selfsup/relative_loc/r50.py | default | feat4 | 64.78 | 18.17 | 22.08 | 29.37 | 35.58 | 41.8 | 48.73 | 55.55 | 58.33 |
Rotation-Pred | selfsup/rotation_pred/r50.py | default | feat4 | 67.38 | 18.91 | 23.33 | 30.57 | 38.22 | 45.83 | 52.23 | 58.08 | 61.11 |
DeepCluster | selfsup/deepcluster/r50.py | default | feat5 | 74.26 | 29.73 | 37.66 | 45.85 | 55.57 | 62.48 | 66.15 | 70.0 | 71.37 |
NPID | selfsup/npid/r50.py | default | feat5 | 74.50 | 24.19 | 31.24 | 39.69 | 50.99 | 59.03 | 64.4 | 68.69 | 70.84 |
| selfsup/npid/r50_ensure_neg.py | ensure_neg=True | feat5 | 75.70 | | | | | | | | |
ODC | selfsup/odc/r50_v1.py | default | feat5 | 78.42 | 32.42 | 40.27 | 49.95 | 59.96 | 65.71 | 69.99 | 73.64 | 75.13 |
MoCo | selfsup/moco/r50_v1.py | default | feat5 | 79.18 | 30.03 | 37.73 | 47.64 | 58.78 | 66.0 | 70.6 | 74.6 | 76.07 |
MoCo v2 | selfsup/moco/r50_v2.py | default | feat5 | 84.05 | 42.33 | 50.57 | 62.59 | 70.47 | 75.82 | 78.53 | 80.9 | 81.99 |
| selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck | feat5 | 84.00 | | | | | | | | |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | feat5 | 78.95 | 32.45 | 40.76 | 50.4 | 59.01 | 65.45 | 70.13 | 73.58 | 75.35 |
| selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | feat5 | 77.65 | | | | | | | | |
BYOL | selfsup/byol/r50_bs4096_ep200.py | default | feat5 | 85.10 | 44.48 | 52.09 | 62.88 | 70.87 | 76.18 | 79.45 | 81.88 | 83.08 |
+Method | Config | Remarks | Best layer | VOC07 SVM | VOC07 SVM Low-shot |
+1 | 2 | 4 | 8 | 16 | 32 | 64 | 96 |
+ImageNet | - | torchvision | feat5 | 87.17 | 52.99 | 63.55 | 73.7 | 78.79 | 81.76 | 83.75 | 85.18 | 85.97 |
+Random | - | kaiming | feat2 | 30.54 | 9.15 | 9.39 | 11.09 | 12.3 | 14.3 | 17.41 | 21.32 | 23.77 |
+Relative-Loc | selfsup/relative_loc/r50.py | default | feat4 | 64.78 | 18.17 | 22.08 | 29.37 | 35.58 | 41.8 | 48.73 | 55.55 | 58.33 |
+Rotation-Pred | selfsup/rotation_pred/r50.py | default | feat4 | 67.38 | 18.91 | 23.33 | 30.57 | 38.22 | 45.83 | 52.23 | 58.08 | 61.11 |
+DeepCluster | selfsup/deepcluster/r50.py | default | feat5 | 74.26 | 29.73 | 37.66 | 45.85 | 55.57 | 62.48 | 66.15 | 70.0 | 71.37 |
+NPID | selfsup/npid/r50.py | default | feat5 | 74.50 | 24.19 | 31.24 | 39.69 | 50.99 | 59.03 | 64.4 | 68.69 | 70.84 |
+ | selfsup/npid/r50_ensure_neg.py | ensure_neg=True | feat5 | 75.70 | | | | | | | | |
+ODC | selfsup/odc/r50_v1.py | default | feat5 | 78.42 | 32.42 | 40.27 | 49.95 | 59.96 | 65.71 | 69.99 | 73.64 | 75.13 |
+MoCo | selfsup/moco/r50_v1.py | default | feat5 | 79.18 | 30.03 | 37.73 | 47.64 | 58.78 | 66.0 | 70.6 | 74.6 | 76.07 |
+MoCo v2 | selfsup/moco/r50_v2.py | default | feat5 | 84.05 | 42.33 | 50.57 | 62.59 | 70.47 | 75.82 | 78.53 | 80.9 | 81.99 |
+ | selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck | feat5 | 84.00 | | | | | | | | |
+SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | feat5 | 78.95 | 32.45 | 40.76 | 50.4 | 59.01 | 65.45 | 70.13 | 73.58 | 75.35 |
+ | selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | feat5 | 77.65 | | | | | | | | |
+BYOL | selfsup/byol/r50_bs4096_ep200.py | default | feat5 | 85.10 | 44.48 | 52.09 | 62.88 | 70.87 | 76.18 | 79.45 | 81.88 | 83.08 |
+
### ImageNet Linear Classification
@@ -21,7 +51,22 @@
* ImageNet (Multi) evaluates features in around 9k dimensions from different layers. Top-1 result of the last epoch is reported.
* ImageNet (Last) evaluates the last feature after global average pooling, e.g., 2048 dimensions for resnet50. The best top-1 result among all epochs is reported.
-Method | Config | Remarks | ImageNet (Multi) | ImageNet (Last) |
---|
feat1 | feat2 | feat3 | feat4 | feat5 | avgpool |
ImageNet | - | torchvision | 15.18 | 33.96 | 47.86 | 67.56 | 76.17 | 74.12 |
Random | - | kaiming | 11.37 | 16.21 | 13.47 | 9.07 | 6.54 | 4.35 |
Relative-Loc | selfsup/relative_loc/r50.py | default | 14.76 | 31.29 | 45.77 | 49.31 | 40.20 | 38.83 |
Rotation-Pred | selfsup/rotation_pred/r50.py | default | 12.89 | 34.30 | 44.91 | 54.99 | 49.09 | 47.01 |
DeepCluster | selfsup/deepcluster/r50.py | default | 12.78 | 30.81 | 43.88 | 57.71 | 51.68 | 46.92 |
NPID | selfsup/npid/r50.py | default | 14.28 | 31.20 | 40.68 | 54.46 | 56.61 | 56.60 |
ODC | selfsup/odc/r50_v1.py | default | 14.76 | 31.82 | 42.44 | 55.76 | 57.70 | 53.42 |
MoCo | selfsup/moco/r50_v1.py | default | 15.32 | 33.08 | 44.68 | 57.27 | 60.60 | 61.02 |
MoCo v2 | selfsup/moco/r50_v2.py | default | 15.35 | 34.57 | 45.81 | 60.96 | 66.72 | 67.02 |
| selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck
| 15.19 | 32.54 | 43.12 | 60.36 | 67.08 | 65.39 |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 17.09 | 31.37 | 41.38 | 54.35 | 61.57 | 60.06 |
| selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | 16.97 | 31.88 | 41.73 | 54.33 | 59.94 | 58.00 |
BYOL | selfsup/byol/r50_bs4096_ep200.py | default | 16.70 | 34.22 | 46.61 | 60.78 | 69.14 | 67.10 |
+Method | Config | Remarks | ImageNet (Multi) | ImageNet (Last) |
+feat1 | feat2 | feat3 | feat4 | feat5 | avgpool |
+ImageNet | - | torchvision | 15.18 | 33.96 | 47.86 | 67.56 | 76.17 | 74.12 |
+Random | - | kaiming | 11.37 | 16.21 | 13.47 | 9.07 | 6.54 | 4.35 |
+Relative-Loc | selfsup/relative_loc/r50.py | default | 14.76 | 31.29 | 45.77 | 49.31 | 40.20 | 38.83 |
+Rotation-Pred | selfsup/rotation_pred/r50.py | default | 12.89 | 34.30 | 44.91 | 54.99 | 49.09 | 47.01 |
+DeepCluster | selfsup/deepcluster/r50.py | default | 12.78 | 30.81 | 43.88 | 57.71 | 51.68 | 46.92 |
+NPID | selfsup/npid/r50.py | default | 14.28 | 31.20 | 40.68 | 54.46 | 56.61 | 56.60 |
+ODC | selfsup/odc/r50_v1.py | default | 14.76 | 31.82 | 42.44 | 55.76 | 57.70 | 53.42 |
+MoCo | selfsup/moco/r50_v1.py | default | 15.32 | 33.08 | 44.68 | 57.27 | 60.60 | 61.02 |
+MoCo v2 | selfsup/moco/r50_v2.py | default | 15.35 | 34.57 | 45.81 | 60.96 | 66.72 | 67.02 |
+ | selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck
| 15.19 | 32.54 | 43.12 | 60.36 | 67.08 | 65.39 |
+SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 17.09 | 31.37 | 41.38 | 54.35 | 61.57 | 60.06 |
+ | selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | 16.97 | 31.88 | 41.73 | 54.33 | 59.94 | 58.00 |
+BYOL | selfsup/byol/r50_bs4096_ep200.py | default | 16.70 | 34.22 | 46.61 | 60.78 | 69.14 | 67.10 |
+
### Places205 Linear Classification
@@ -30,7 +75,22 @@
* For DeepCluster, use the corresponding one with `_sobel`.
* Places205 evaluates features in around 9k dimensions from different layers. Top-1 result of the last epoch is reported.
-Method | Config | Remarks | Places205 |
---|
feat1 | feat2 | feat3 | feat4 | feat5 |
ImageNet | - | torchvision | 21.27 | 36.10 | 43.03 | 51.38 | 53.05 |
Random | - | kaiming | 17.19 | 21.70 | 19.23 | 14.59 | 11.73 |
Relative-Loc | selfsup/relative_loc/r50.py | default | 21.07 | 34.86 | 42.84 | 45.71 | 41.45 |
Rotation-Pred | selfsup/rotation_pred/r50.py | default | 18.65 | 35.71 | 42.28 | 45.98 | 43.72 |
DeepCluster | selfsup/deepcluster/r50.py | default | 18.80 | 33.93 | 41.44 | 47.22 | 42.61 |
NPID | selfsup/npid/r50.py | default | 20.53 | 34.03 | 40.48 | 47.13 | 47.73 |
ODC | selfsup/odc/r50_v1.py | default | 20.94 | 34.78 | 41.19 | 47.45 | 49.18 |
MoCo | selfsup/moco/r50_v1.py | default | 21.13 | 35.19 | 42.40 | 48.78 | 50.70 |
MoCo v2 | selfsup/moco/r50_v2.py | default | 20.86 | 35.63 | 42.57 | 49.93 | 52.05 |
| selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck | | | | | |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 22.55 | 34.14 | 40.35 | 47.15 | 51.64 |
| selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | | | | | |
BYOL | selfsup/byol/r50_bs4096_ep200.py | default | 22.28 | 35.95 | 43.03 | 49.79 | 52.75 |
+Method | Config | Remarks | Places205 |
+feat1 | feat2 | feat3 | feat4 | feat5 |
+ImageNet | - | torchvision | 21.27 | 36.10 | 43.03 | 51.38 | 53.05 |
+Random | - | kaiming | 17.19 | 21.70 | 19.23 | 14.59 | 11.73 |
+Relative-Loc | selfsup/relative_loc/r50.py | default | 21.07 | 34.86 | 42.84 | 45.71 | 41.45 |
+Rotation-Pred | selfsup/rotation_pred/r50.py | default | 18.65 | 35.71 | 42.28 | 45.98 | 43.72 |
+DeepCluster | selfsup/deepcluster/r50.py | default | 18.80 | 33.93 | 41.44 | 47.22 | 42.61 |
+NPID | selfsup/npid/r50.py | default | 20.53 | 34.03 | 40.48 | 47.13 | 47.73 |
+ODC | selfsup/odc/r50_v1.py | default | 20.94 | 34.78 | 41.19 | 47.45 | 49.18 |
+MoCo | selfsup/moco/r50_v1.py | default | 21.13 | 35.19 | 42.40 | 48.78 | 50.70 |
+MoCo v2 | selfsup/moco/r50_v2.py | default | 20.86 | 35.63 | 42.57 | 49.93 | 52.05 |
+ | selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck | | | | | |
+SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 22.55 | 34.14 | 40.35 | 47.15 | 51.64 |
+ | selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | | | | | |
+BYOL | selfsup/byol/r50_bs4096_ep200.py | default | 22.28 | 35.95 | 43.03 | 49.79 | 52.75 |
+
### ImageNet Semi-Supervised Classification
@@ -40,9 +100,39 @@
* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the performance. Hence, we prepare a list of settings with the base learning rate from \{0.001, 0.01, 0.1\} and the learning rate multiplier for the head from \{1, 10, 100\}. We choose the best performing setting for each method.
* Please use `--deterministic` in this benchmark.
-Method | Config | Remarks | Optimal setting for ImageNet 1% | ImageNet 1% |
---|
top-1 | top-5 |
ImageNet | - | torchvision | r50_lr0_001_head100.py | 68.68 | 88.87 |
Random | - | kaiming | r50_lr0_01_head1.py | 1.56 | 4.99 |
Relative-Loc | selfsup/relative_loc/r50.py | default | r50_lr0_01_head100.py | 16.48 | 40.37 |
Rotation-Pred | selfsup/rotation_pred/r50.py | default | r50_lr0_01_head100.py | 18.98 | 44.05 |
DeepCluster | selfsup/deepcluster/r50.py | default | r50_lr0_01_head1_sobel.py | 33.44 | 58.62 |
NPID | selfsup/npid/r50.py | default | r50_lr0_01_head100.py | 27.95 | 54.37 |
ODC | selfsup/odc/r50_v1.py | default | r50_lr0_1_head100.py | 32.39 | 61.02 |
MoCo | selfsup/moco/r50_v1.py | default | r50_lr0_01_head100.py | 33.15 | 61.30 |
MoCo v2 | selfsup/moco/r50_v2.py | default | r50_lr0_01_head100.py | 38.71 | 67.90 |
| selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck
| r50_lr0_01_head100.py | 31.37
| 59.65 |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | r50_lr0_01_head100.py | 36.09 | 64.50 |
| selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | r50_lr0_01_head100.py | 36.31 | 64.68 |
BYOL | selfsup/byol/r50_bs4096_ep200.py | default | r50_lr0_01_head10.py | 49.37 | 76.75 |
+Method | Config | Remarks | Optimal setting for ImageNet 1% | ImageNet 1% |
+top-1 | top-5 |
+ImageNet | - | torchvision | r50_lr0_001_head100.py | 68.68 | 88.87 |
+Random | - | kaiming | r50_lr0_01_head1.py | 1.56 | 4.99 |
+Relative-Loc | selfsup/relative_loc/r50.py | default | r50_lr0_01_head100.py | 16.48 | 40.37 |
+Rotation-Pred | selfsup/rotation_pred/r50.py | default | r50_lr0_01_head100.py | 18.98 | 44.05 |
+DeepCluster | selfsup/deepcluster/r50.py | default | r50_lr0_01_head1_sobel.py | 33.44 | 58.62 |
+NPID | selfsup/npid/r50.py | default | r50_lr0_01_head100.py | 27.95 | 54.37 |
+ODC | selfsup/odc/r50_v1.py | default | r50_lr0_1_head100.py | 32.39 | 61.02 |
+MoCo | selfsup/moco/r50_v1.py | default | r50_lr0_01_head100.py | 33.15 | 61.30 |
+MoCo v2 | selfsup/moco/r50_v2.py | default | r50_lr0_01_head100.py | 38.71 | 67.90 |
+ | selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck
| r50_lr0_01_head100.py | 31.37
| 59.65 |
+SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | r50_lr0_01_head100.py | 36.09 | 64.50 |
+ | selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | r50_lr0_01_head100.py | 36.31 | 64.68 |
+BYOL | selfsup/byol/r50_bs4096_ep200.py | default | r50_lr0_01_head10.py | 49.37 | 76.75 |
+
-Method | Config | Remarks | Optimal setting for ImageNet 10% | ImageNet 10% |
---|
top-1 | top-5 |
ImageNet | - | torchvision | r50_lr0_001_head10.py | 74.53 | 92.19 |
Random | - | kaiming | r50_lr0_01_head1.py | 21.78 | 44.24 |
Relative-Loc | selfsup/relative_loc/r50.py | default | r50_lr0_01_head100.py | 53.86 | 79.62 |
Rotation-Pred | selfsup/rotation_pred/r50.py | default | r50_lr0_01_head100.py | 54.75 | 80.21 |
DeepCluster | selfsup/deepcluster/r50.py | default | r50_lr0_01_head1_sobel.py | 52.94 | 77.96 |
NPID | selfsup/npid/r50.py | default | r50_lr0_01_head100.py | 57.22 | 81.39 |
ODC | selfsup/odc/r50_v1.py | default | r50_lr0_1_head10.py | 58.15 | 82.55 |
MoCo | selfsup/moco/r50_v1.py | default | r50_lr0_01_head100.py | 60.08 | 84.02 |
MoCo v2 | selfsup/moco/r50_v2.py | default | r50_lr0_01_head100.py | 61.64 | 84.90 |
| selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck
| | 60.60 | 84.29 |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | r50_lr0_01_head100.py | 58.46 | 82.60 |
| selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | | 58.38 | 82.53 |
BYOL | selfsup/byol/r50_bs4096_ep200.py | default | r50_lr0_01_head100.py | 65.94 | 87.81 |
+Method | Config | Remarks | Optimal setting for ImageNet 10% | ImageNet 10% |
+top-1 | top-5 |
+ImageNet | - | torchvision | r50_lr0_001_head10.py | 74.53 | 92.19 |
+Random | - | kaiming | r50_lr0_01_head1.py | 21.78 | 44.24 |
+Relative-Loc | selfsup/relative_loc/r50.py | default | r50_lr0_01_head100.py | 53.86 | 79.62 |
+Rotation-Pred | selfsup/rotation_pred/r50.py | default | r50_lr0_01_head100.py | 54.75 | 80.21 |
+DeepCluster | selfsup/deepcluster/r50.py | default | r50_lr0_01_head1_sobel.py | 52.94 | 77.96 |
+NPID | selfsup/npid/r50.py | default | r50_lr0_01_head100.py | 57.22 | 81.39 |
+ODC | selfsup/odc/r50_v1.py | default | r50_lr0_1_head10.py | 58.15 | 82.55 |
+MoCo | selfsup/moco/r50_v1.py | default | r50_lr0_01_head100.py | 60.08 | 84.02 |
+MoCo v2 | selfsup/moco/r50_v2.py | default | r50_lr0_01_head100.py | 61.64 | 84.90 |
+ | selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck
| | 60.60 | 84.29 |
+SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | r50_lr0_01_head100.py | 58.46 | 82.60 |
+ | selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | | 58.38 | 82.53 |
+BYOL | selfsup/byol/r50_bs4096_ep200.py | default | r50_lr0_01_head100.py | 65.94 | 87.81 |
+
### PASCAL VOC07+12 Object Detection
@@ -51,7 +141,18 @@
* Config: `benchmarks/detection/configs/pascal_voc_R_50_C4_24k_moco.yaml`.
* Please follow [here](GETTING_STARTED.md#voc0712--coco17-object-detection) to run the evaluation.
-Method | Config | Remarks | VOC07+12 |
---|
AP50 | AP | AP75 |
ImageNet | - | torchvision | 81.58 | 54.19 | 59.80 |
Random | - | kaiming | 59.02 | 32.83 | 31.60 |
Relative-Loc | selfsup/relative_loc/r50.py | default | 80.36 | 55.13 | 61.18 |
Rotation-Pred | selfsup/rotation_pred/r50.py | default | 80.91 | 55.52 | 61.39 |
NPID | selfsup/npid/r50.py | default | 80.03 | 54.11 | 59.50 |
MoCo | selfsup/moco/r50_v1.py | default | 81.38 | 55.95 | 62.23 |
MoCo v2 | selfsup/moco/r50_v2.py | default | 81.96 | 56.63 | 62.90 |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 79.41 | 51.54 | 55.63 |
BYOL | selfsup/byol/r50_bs4096_ep200.py | default | 80.95 | 51.87 | 56.53 |
+Method | Config | Remarks | VOC07+12 |
+AP50 | AP | AP75 |
+ImageNet | - | torchvision | 81.58 | 54.19 | 59.80 |
+Random | - | kaiming | 59.02 | 32.83 | 31.60 |
+Relative-Loc | selfsup/relative_loc/r50.py | default | 80.36 | 55.13 | 61.18 |
+Rotation-Pred | selfsup/rotation_pred/r50.py | default | 80.91 | 55.52 | 61.39 |
+NPID | selfsup/npid/r50.py | default | 80.03 | 54.11 | 59.50 |
+MoCo | selfsup/moco/r50_v1.py | default | 81.38 | 55.95 | 62.23 |
+MoCo v2 | selfsup/moco/r50_v2.py | default | 81.96 | 56.63 | 62.90 |
+SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 79.41 | 51.54 | 55.63 |
+BYOL | selfsup/byol/r50_bs4096_ep200.py | default | 80.95 | 51.87 | 56.53 |
+
### COCO2017 Object Detection
@@ -60,6 +161,17 @@
* Config: `benchmarks/detection/configs/coco_R_50_C4_2x_moco.yaml`.
* Please follow [here](GETTING_STARTED.md#voc0712--coco17-object-detection) to run the evaluation.
-Method | Config | Remarks | COCO2017 |
---|
AP50(Box) | AP(Box) | AP75(Box) | AP50(Mask) | AP(Mask) | AP75(Mask) |
ImageNet | - | torchvision | 59.9 | 40.0 | 43.1 | 56.5 | 34.7 | 36.9 |
Random | - | kaiming | 54.6 | 35.6 | 38.2 | 51.5 | 31.4 | 33.5 |
Relative-Loc | selfsup/relative_loc/r50.py | default | 59.6 | 40.0 | 43.5 | 56.5 | 35.0 | 37.3 |
Rotation-Pred | selfsup/rotation_pred/r50.py | default | 59.3 | 40.0 | 43.6 | 56.0 | 34.9 | 37.4 |
NPID | selfsup/npid/r50.py | default | 59.0 | 39.4 | 42.8 | 55.9 | 34.5 | 36.6 |
MoCo | selfsup/moco/r50_v1.py | default | 60.5 | 40.9 | 44.2 | 57.1 | 35.5 | 37.7 |
MoCo v2 | selfsup/moco/r50_v2.py | default | 60.7 | 40.9 | 44.2 | 57.2 | 35.5 | 37.9 |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 59.1 | 39.6 | 42.9 | 55.9 | 34.6 | 37.1 |
BYOL | selfsup/byol/r50.py | default | | | | | | |
+Method | Config | Remarks | COCO2017 |
+AP50(Box) | AP(Box) | AP75(Box) | AP50(Mask) | AP(Mask) | AP75(Mask) |
+ImageNet | - | torchvision | 59.9 | 40.0 | 43.1 | 56.5 | 34.7 | 36.9 |
+Random | - | kaiming | 54.6 | 35.6 | 38.2 | 51.5 | 31.4 | 33.5 |
+Relative-Loc | selfsup/relative_loc/r50.py | default | 59.6 | 40.0 | 43.5 | 56.5 | 35.0 | 37.3 |
+Rotation-Pred | selfsup/rotation_pred/r50.py | default | 59.3 | 40.0 | 43.6 | 56.0 | 34.9 | 37.4 |
+NPID | selfsup/npid/r50.py | default | 59.0 | 39.4 | 42.8 | 55.9 | 34.5 | 36.6 |
+MoCo | selfsup/moco/r50_v1.py | default | 60.5 | 40.9 | 44.2 | 57.1 | 35.5 | 37.7 |
+MoCo v2 | selfsup/moco/r50_v2.py | default | 60.7 | 40.9 | 44.2 | 57.2 | 35.5 | 37.9 |
+SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 59.1 | 39.6 | 42.9 | 55.9 | 34.6 | 37.1 |
+BYOL | selfsup/byol/r50.py | default | | | | | | |
+