diff --git a/configs/selfsup/barlowtwins/metafile.yml b/configs/selfsup/barlowtwins/metafile.yml index ddb44060..139a9b3d 100644 --- a/configs/selfsup/barlowtwins/metafile.yml +++ b/configs/selfsup/barlowtwins/metafile.yml @@ -19,10 +19,18 @@ Models: Metadata: Epochs: 300 Batch Size: 2048 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 71.66 + Results: null Config: configs/selfsup/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220419-5ae15f89.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 256 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 71.8 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-coslr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-52fde35f.pth diff --git a/configs/selfsup/byol/metafile.yml b/configs/selfsup/byol/metafile.yml index d173da40..c1288696 100644 --- a/configs/selfsup/byol/metafile.yml +++ b/configs/selfsup/byol/metafile.yml @@ -14,39 +14,23 @@ Collections: README: configs/selfsup/byol/README.md Models: - - Name: byol_resnet50_8xb32-accum16-coslr-200e_in1k - In Collection: BYOL - Metadata: - Epochs: 200 - Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 71.72 - Config: configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k_20220225-5c8b2c2e.pth - Name: byol_resnet50_16xb256-coslr-200e_in1k In Collection: BYOL Metadata: Epochs: 200 Batch Size: 4096 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 71.88 + Results: null Config: configs/selfsup/byol/byol_resnet50_16xb256-coslr-200e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_16xb256-coslr-200e_in1k_20220527-b6f8eedd.pth - - Name: byol_resnet50_8xb32-accum16-coslr-300e_in1k - In Collection: BYOL - Metadata: - Epochs: 300 - Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 72.93 - Config: configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k_20220225-a0daa54a.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 4096 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 71.8 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb512-coslr-90e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-7596c6f5.pth diff --git a/configs/selfsup/cae/RAEDME.md b/configs/selfsup/cae/README.md similarity index 100% rename from configs/selfsup/cae/RAEDME.md rename to configs/selfsup/cae/README.md diff --git a/configs/selfsup/cae/metafile.yaml b/configs/selfsup/cae/metafile.yaml deleted file mode 100644 index 627153ef..00000000 --- a/configs/selfsup/cae/metafile.yaml +++ /dev/null @@ -1,27 +0,0 @@ -Collections: - - Name: CAE - Metadata: - Training Data: ImageNet-1k - Training Techniques: - - AdamW - Training Resources: 8x A100-80G GPUs - Architecture: - - ViT - Paper: - URL: https://arxiv.org/abs/2202.03026 - Title: "Context Autoencoder for Self-Supervised Representation Learning" - README: configs/selfsup/cae/README.md - -Models: - - Name: cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k - In Collection: CAE - Metadata: - Epochs: 300 - Batch Size: 2048 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 83.2 - Config: configs/selfsup/cae/cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/cae/cae_vit-base-p16_16xb256-coslr-300e_in1k-224_20220427-4c786349.pth diff --git a/configs/selfsup/cae/metafile.yml b/configs/selfsup/cae/metafile.yml new file mode 100644 index 00000000..78c3c48a --- /dev/null +++ b/configs/selfsup/cae/metafile.yml @@ -0,0 +1,35 @@ +Collections: + - Name: CAE + Metadata: + Training Data: ImageNet-1k + Training Techniques: + - AdamW + Training Resources: 16x A100-80G GPUs + Architecture: + - ViT + Paper: + URL: https://arxiv.org/abs/2202.03026 + Title: "Context Autoencoder for Self-Supervised Representation Learning" + README: configs/selfsup/cae/README.md + +Models: + - Name: cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k + In Collection: CAE + Metadata: + Epochs: 300 + Batch Size: 2048 + Results: null + Config: configs/selfsup/cae/cae_vit-base-p16_16xb128-amp-coslr-300e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k_20220825-404a1929.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 60.8 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.pth diff --git a/configs/selfsup/densecl/metafile.yml b/configs/selfsup/densecl/metafile.yml index ad1f0eed..0dcd1d22 100644 --- a/configs/selfsup/densecl/metafile.yml +++ b/configs/selfsup/densecl/metafile.yml @@ -19,10 +19,18 @@ Models: Metadata: Epochs: 200 Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 63.62 + Results: null Config: configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k_20220225-8c7808fe.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 256 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 63.5 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.pth diff --git a/configs/selfsup/mae/metafile.yaml b/configs/selfsup/mae/metafile.yaml deleted file mode 100644 index dc0773b0..00000000 --- a/configs/selfsup/mae/metafile.yaml +++ /dev/null @@ -1,27 +0,0 @@ -Collections: - - Name: MAE - Metadata: - Training Data: ImageNet-1k - Training Techniques: - - AdamW - Training Resources: 8x A100-80G GPUs - Architecture: - - ViT - Paper: - URL: https://arxiv.org/abs/2111.06377 - Title: "Masked Autoencoders Are Scalable Vision Learners" - README: configs/selfsup/mae/README.md - -Models: - - Name: mae_vit-base-p16_8xb512-coslr-400e_in1k - In Collection: MAE - Metadata: - Epochs: 400 - Batch Size: 4096 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 83.1 - Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k-224_20220223-85be947b.pth diff --git a/configs/selfsup/mae/metafile.yml b/configs/selfsup/mae/metafile.yml new file mode 100644 index 00000000..5de231c7 --- /dev/null +++ b/configs/selfsup/mae/metafile.yml @@ -0,0 +1,250 @@ +Collections: + - Name: MAE + Metadata: + Training Data: ImageNet-1k + Training Techniques: + - AdamW + Training Resources: 8x A100-80G GPUs + Architecture: + - ViT + Paper: + URL: https://arxiv.org/abs/2111.06377 + Title: "Masked Autoencoders Are Scalable Vision Learners" + README: configs/selfsup/mae/README.md + +Models: + - Name: mae_vit-base-p16_8xb512-amp-coslr-300e_in1k + In Collection: MAE + Metadata: + Epochs: 300 + Batch Size: 4096 + Results: null + Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 16384 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 60.8 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_linear-8xb2048-coslr-90e_in1k.py + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 83.1 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py + - Name: mae_vit-base-p16_8xb512-amp-coslr-400e_in1k + In Collection: MAE + Metadata: + Epochs: 400 + Batch Size: 4096 + Results: null + Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-amp-coslr-400e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 16384 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 62.5 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_linear-8xb2048-coslr-90e_in1k.py + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 83.3 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py + - Name: mae_vit-base-p16_8xb512-amp-coslr-800e_in1k + In Collection: MAE + Metadata: + Epochs: 800 + Batch Size: 4096 + Results: null + Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-amp-coslr-800e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 16384 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 65.1 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_linear-8xb2048-coslr-90e_in1k.py + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 83.3 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py + - Name: mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k + In Collection: MAE + Metadata: + Epochs: 1600 + Batch Size: 4096 + Results: null + Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 16384 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 67.1 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_linear-8xb2048-coslr-90e_in1k.py + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 83.5 + Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20220825-cf70aa21.pth + - Name: mae_vit-large-p16_8xb512-amp-coslr-400e_in1k + In Collection: MAE + Metadata: + Epochs: 400 + Batch Size: 4096 + Results: null + Config: configs/selfsup/mae/mae_vit-large-p16_8xb512-amp-coslr-400e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 16384 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 70.7 + Config: configs/benchmarks/classification/imagenet/vit-large-p16_linear-8xb2048-coslr-90e_in1k.py + - Type: Image Classification + Metadata: + Epochs: 50 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 85.2 + Config: configs/benchmarks/classification/imagenet/vit-large-p16_ft-8xb128-coslr-50e_in1k.py + - Name: mae_vit-large-p16_8xb512-amp-coslr-800e_in1k + In Collection: MAE + Metadata: + Epochs: 800 + Batch Size: 4096 + Results: null + Config: configs/selfsup/mae/mae_vit-large-p16_8xb512-amp-coslr-800e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 16384 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 73.7 + Config: configs/benchmarks/classification/imagenet/vit-large-p16_linear-8xb2048-coslr-90e_in1k.py + - Type: Image Classification + Metadata: + Epochs: 50 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 85.4 + Config: configs/benchmarks/classification/imagenet/vit-large-p16_ft-8xb128-coslr-50e_in1k.py + - Name: mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k + In Collection: MAE + Metadata: + Epochs: 1600 + Batch Size: 4096 + Results: null + Config: configs/selfsup/mae/mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 16384 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 75.5 + Config: configs/benchmarks/classification/imagenet/vit-large-p16_linear-8xb2048-coslr-90e_in1k.py + - Type: Image Classification + Metadata: + Epochs: 50 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 85.7 + Config: configs/benchmarks/classification/imagenet/vit-large-p16_ft-8xb128-coslr-50e_in1k.py + - Name: mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k.py + In Collection: MAE + Metadata: + Epochs: 1600 + Batch Size: 4096 + Results: null + Config: configs/selfsup/mae/mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k.py.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 50 + Batch Size: 1024 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 86.9 + Config: configs/benchmarks/classification/imagenet/vit-large-p16_ft-8xb128-coslr-50e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k_20220916-0bfc9bfd.pth + - Type: Image Classification + Metadata: + Epochs: 50 + Batch Size: 256 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 87.3 + Config: configs/benchmarks/classification/imagenet/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448_20220916-95b6a0ce.pth diff --git a/configs/selfsup/mocov2/metafile.yml b/configs/selfsup/mocov2/metafile.yml index ac8d71b2..a15b40ab 100644 --- a/configs/selfsup/mocov2/metafile.yml +++ b/configs/selfsup/mocov2/metafile.yml @@ -20,10 +20,18 @@ Models: Metadata: Epochs: 200 Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 67.58 + Results: null Config: configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k_20220225-89e03af4.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 256 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 67.5 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-994c4128.pth diff --git a/configs/selfsup/npid/metafile.yml b/configs/selfsup/npid/metafile.yml index bdb2235d..9e376b60 100644 --- a/configs/selfsup/npid/metafile.yml +++ b/configs/selfsup/npid/metafile.yml @@ -20,10 +20,18 @@ Models: Metadata: Epochs: 200 Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 57.97 + Results: null Config: configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k_20220225-5fbbda2a.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/npid/npid_resnet50_8xb32-steplr-200e_in1k/npid_resnet50_8xb32-steplr-200e_in1k_20220825-a67c5440.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 256 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 58.3 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/npid/npid_resnet50_8xb32-steplr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-661b736e.pth diff --git a/configs/selfsup/relative_loc/metafile.yml b/configs/selfsup/relative_loc/metafile.yml index ebb6494c..f03d139c 100644 --- a/configs/selfsup/relative_loc/metafile.yml +++ b/configs/selfsup/relative_loc/metafile.yml @@ -19,10 +19,18 @@ Models: Metadata: Epochs: 70 Batch Size: 512 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 38.78 + Results: null Config: configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20220225-84784688.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k/relative-loc_resnet50_8xb64-steplr-70e_in1k_20220825-daae1b41.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 256 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 40.4 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-c2a0b188.pth diff --git a/configs/selfsup/rotation_pred/metafile.yml b/configs/selfsup/rotation_pred/metafile.yml index c27568aa..58a46311 100644 --- a/configs/selfsup/rotation_pred/metafile.yml +++ b/configs/selfsup/rotation_pred/metafile.yml @@ -19,10 +19,18 @@ Models: Metadata: Epochs: 70 Batch Size: 128 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 48.12 + Results: null Config: configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20220225-5b9f06a0.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20220825-a8bf5f69.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 256 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 47.0 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-7c6edcb3.pth diff --git a/configs/selfsup/simclr/metafile.yml b/configs/selfsup/simclr/metafile.yml index e1339713..5840ebf7 100644 --- a/configs/selfsup/simclr/metafile.yml +++ b/configs/selfsup/simclr/metafile.yml @@ -19,22 +19,58 @@ Models: Metadata: Epochs: 200 Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 62.56 + Results: null Config: configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k_20220428-46ef6bb9.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_8xb32-coslr-200e_in1k/simclr_resnet50_8xb32-coslr-200e_in1k_20220825-15f807a4.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 4096 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 62.7 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb512-coslr-90e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f12c0457.pth - Name: simclr_resnet50_16xb256-coslr-200e_in1k In Collection: SimCLR Metadata: Epochs: 200 Batch Size: 4096 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 66.66 + Results: null Config: configs/selfsup/simclr/simclr_resnet50_16xb256-coslr-200e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_16xb256-coslr-200e_in1k_20220428-8c24b063.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/simclr_resnet50_16xb256-coslr-200e_in1k_20220825-4d9cce50.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 4096 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 66.9 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb512-coslr-90e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f12c0457.pth + - Name: simclr_resnet50_16xb256-coslr-800e_in1k + In Collection: SimCLR + Metadata: + Epochs: 200 + Batch Size: 4096 + Results: null + Config: configs/selfsup/simclr/simclr_resnet50_16xb256-coslr-800e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 4096 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 69.2 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb512-coslr-90e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-b80ae1e5.pth diff --git a/configs/selfsup/simmim/metafile.yml b/configs/selfsup/simmim/metafile.yml index 881494bf..df07a805 100644 --- a/configs/selfsup/simmim/metafile.yml +++ b/configs/selfsup/simmim/metafile.yml @@ -7,22 +7,79 @@ Collections: Training Resources: 16x A100 GPUs Architecture: - Swin - - ViT Paper: URL: https://arxiv.org/abs/2111.09886 Title: "SimMIM: A Simple Framework for Masked Image Modeling" README: configs/selfsup/simmim/README.md Models: - - Name: simmim_swin-base_8xb256-coslr-100e_in1k-192 + - Name: simmim_swin-base_16xb128-coslr-100e_in1k-192 In Collection: SimMIM Metadata: Epochs: 100 Batch Size: 2048 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 82.9 + Results: null Config: configs/selfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192.py - Weights: https://download.openmmlab.com/mmselfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192_20220316-1d090125.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 2048 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 82.7 + Config: configs/benchmarks/classification/imagenet/swin-base_ft-8xb256-coslr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.pth + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 2048 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 83.5 + Config: configs/benchmarks/classification/imagenet/swin-base_ft-8xb256-coslr-100e_in1k-224.py + - Name: simmim_swin-base_16xb128-coslr-800e_in1k-192 + In Collection: SimMIM + Metadata: + Epochs: 100 + Batch Size: 2048 + Results: null + Config: configs/selfsup/simmim/simmim_swin-base_16xb128-coslr-800e_in1k-192.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 2048 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 83.8 + Config: configs/benchmarks/classification/imagenet/swin-base_ft-8xb256-coslr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.pth + - Name: simmim_swin-large_16xb128-coslr-800e_in1k-192 + In Collection: SimMIM + Metadata: + Epochs: 100 + Batch Size: 2048 + Results: null + Config: configs/selfsup/simmim/simmim_swin-base_16xb128-coslr-800e_in1k-192.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 2048 + Results: + - Task: Fine-tuning + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 84.8 + Config: configs/benchmarks/classification/imagenet/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224_20220916-d4865790.pth diff --git a/configs/selfsup/simsiam/metafile.yml b/configs/selfsup/simsiam/metafile.yml index 9c46fd38..aec49c5a 100644 --- a/configs/selfsup/simsiam/metafile.yml +++ b/configs/selfsup/simsiam/metafile.yml @@ -19,22 +19,38 @@ Models: Metadata: Epochs: 100 Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 68.28 + Results: null Config: configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20220225-68a88ad8.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/simsiam_resnet50_8xb32-coslr-100e_in1k_20220825-d07cb2e6.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 4096 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 68.3 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb512-coslr-90e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f53ba400.pth - Name: simsiam_resnet50_8xb32-coslr-200e_in1k In Collection: SimSiam Metadata: Epochs: 200 Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 69.84 + Results: null Config: configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py - Weights: https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20220225-2f488143.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 90 + Batch Size: 4096 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 69.8 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb512-coslr-90e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-519b5135.pth diff --git a/configs/selfsup/swav/metafile.yml b/configs/selfsup/swav/metafile.yml index 688bd618..96f8b316 100644 --- a/configs/selfsup/swav/metafile.yml +++ b/configs/selfsup/swav/metafile.yml @@ -19,10 +19,18 @@ Models: Metadata: Epochs: 200 Batch Size: 256 - Results: - - Task: Self-Supervised Image Classification - Dataset: ImageNet-1k - Metrics: - Top 1 Accuracy: 70.47 + Results: null Config: configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py - Weights: https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220225-0497dd5d.pth + Weights: https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220825-5b3fc7fc.pth + Downstream: + - Type: Image Classification + Metadata: + Epochs: 100 + Batch Size: 256 + Results: + - Task: Linear Evaluation + Dataset: ImageNet-1k + Metrics: + Top 1 Accuracy: 70.5 + Config: configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-coslr-100e_in1k.py + Weights: https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-80341e08.pth diff --git a/docs/en/model_zoo.md b/docs/en/model_zoo.md index 3a91816a..8da404c2 100644 --- a/docs/en/model_zoo.md +++ b/docs/en/model_zoo.md @@ -107,7 +107,7 @@ ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. T