From 45951c1b121fd4e4a116a22d7680efeeecb59168 Mon Sep 17 00:00:00 2001
From: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com>
Date: Mon, 10 Jan 2022 16:40:47 +0800
Subject: [PATCH] [Docs] update README and model_zoo.md (#165)
* [Docs] update README
* [Docs] add simsiam logs
* [Docs] add chinese version of model_zoo.md
* [Docs] fix typo
* [Benchmark] update SimSiam 100 epoch benchmark results
* [Benchmark] update simsiam 100 epoch seg results
---
README.md | 2 +
README_zh-CN.md | 12 +++++-
configs/selfsup/simsiam/README.md | 10 ++---
docs/en/model_zoo.md | 19 +++++----
docs/zh_cn/model_zoo.md | 71 ++++++++++++++++---------------
5 files changed, 66 insertions(+), 48 deletions(-)
diff --git a/README.md b/README.md
index 8a3d88c1..564d8b9d 100644
--- a/README.md
+++ b/README.md
@@ -150,3 +150,5 @@ Remarks:
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab few shot learning toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
+- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
+- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
diff --git a/README_zh-CN.md b/README_zh-CN.md
index 0cff19ea..dad5cd4f 100644
--- a/README_zh-CN.md
+++ b/README_zh-CN.md
@@ -40,6 +40,14 @@ MMSelfSup 是一个基于 PyTorch 实现的开源自监督表征学习工具箱
该项目采用 [Apache 2.0 开源许可证](LICENSE).
+## 修改日志
+
+MMSelfSup **v0.5.0** 在 16/12/2021 发版.
+
+请参考 [changelog.md](docs/zh_cn/changelog.md) 获取更多细节和历史版本信息。
+
+MMSelfSup 和 OpenSelfSup 的不同点写在 [compatibility.md](docs/en/compatibility.md) 当中。
+
## 模型库和基准测试
### 模型库
@@ -136,13 +144,15 @@ MMSelfSup 是一款由不同学校和公司共同贡献的开源项目,我们
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
+- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
+- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=GJP18SjI),添加OpenMMLab 官方小助手微信,加入 MMSelfSup 微信社区。
我们会在 OpenMMLab 社区为大家
diff --git a/configs/selfsup/simsiam/README.md b/configs/selfsup/simsiam/README.md
index ea01158b..b9a4a7f1 100644
--- a/configs/selfsup/simsiam/README.md
+++ b/configs/selfsup/simsiam/README.md
@@ -42,7 +42,7 @@ Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.
| Self-Supervised Config | Best Layer | SVM | k=1 | k=2 | k=4 | k=8 | k=16 | k=32 | k=64 | k=96 |
| ---------------------------------------------------------------------- | ---------- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- |
-| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | feature5 | 84.21 | 39.71 | 49.65 | 62.79 | 69.97 | 74.73 | 78.30 | 81.06 | 82.44 |
+| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | feature5 | 84.64 | 39.65 | 49.86 | 62.48 | 69.50 | 74.48 | 78.31 | 81.06 | 82.56 |
| [resnet50_8xb32-coslr-200e](simsiam_resnet50_8xb32-coslr-200e_in1k.py) | feature5 | 85.20 | 39.85 | 50.44 | 63.73 | 70.93 | 75.74 | 79.42 | 82.02 | 83.44 |
#### ImageNet Linear Evaluation
@@ -53,7 +53,7 @@ The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePool
| Self-Supervised Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
| ---------------------------------------------------------------------- | -------- | -------- | -------- | -------- | -------- | ------- |
-| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 15.85 | 34.02 | 46.00 | 60.90 | 67.92 | 67.88 |
+| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 16.27 | 33.77 | 45.80 | 60.83 | 68.21 | 68.20 |
| [resnet50_8xb32-coslr-200e](simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 15.57 | 37.21 | 47.28 | 62.21 | 69.85 | 69.80 |
@@ -67,7 +67,7 @@ Please refer to [faster_rcnn_r50_c4_mstrain_24k_voc0712.py](../../benchmarks/mmd
| Self-Supervised Config | AP50 |
| ---------------------------------------------------------------------- | ----- |
-| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 79.97 |
+| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 79.80 |
| [resnet50_8xb32-coslr-200e](simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 79.85 |
#### COCO2017
@@ -76,7 +76,7 @@ Please refer to [mask_rcnn_r50_fpn_mstrain_1x_coco.py](../../benchmarks/mmdetect
| Self-Supervised Config | mAP(Box) | AP50(Box) | AP75(Box) | mAP(Mask) | AP50(Mask) | AP75(Mask) |
| ---------------------------------------------------------------------- | -------- | --------- | --------- | --------- | ---------- | ---------- |
-| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 38.3 | 57.6 | 41.7 | 34.4 | 54.8 | 36.9 |
+| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 38.6 | 57.6 | 42.3 | 34.6 | 54.8 | 36.9 |
| [resnet50_8xb32-coslr-200e](simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 38.8 | 58.0 | 42.3 | 34.9 | 55.3 | 37.6 |
### Segmentation
@@ -89,5 +89,5 @@ Please refer to [fcn_r50-d8_512x512_20k_voc12aug.py](../../benchmarks/mmsegmenta
| Self-Supervised Config | mIOU |
| ---------------------------------------------------------------------- | ----- |
-| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 46.11 |
+| [resnet50_8xb32-coslr-100e](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 48.35 |
| [resnet50_8xb32-coslr-200e](simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 46.27 |
diff --git a/docs/en/model_zoo.md b/docs/en/model_zoo.md
index 50a24e8e..718014bf 100644
--- a/docs/en/model_zoo.md
+++ b/docs/en/model_zoo.md
@@ -1,6 +1,6 @@
# Model Zoo
-All models and benchmarks results are recorded below.
+All models and part of benchmark results are recorded below.
## Pre-trained models
@@ -16,16 +16,19 @@ All models and benchmarks results are recorded below.
| [Relative Location](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/README.md) | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20211213-cdd3162f.pth) | [log](https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20210930_144754.log.json) |
| [Rotation Prediction](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/README.md) | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20211213-513972ac.pth) | [log](https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20210930_151459.log.json) |
| [SimCLR](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/README.md) | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k_20211213-d0e53669.pth) |
-| [SimSiam](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/README.md) | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20211213-925d628c.pth) |
-| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20211213-b605f9f1.pth) |
+| [SimSiam](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/README.md) | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20211230-65a0eff4.pth) | [log](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20211225_132004.log.json) |
+| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20211213-b605f9f1.pth) | [log](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20211225_132031.log.json) |
| [SwAV](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/README.md) | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | [model](https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20211213-0028900c.pth) | [log](https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20211206_102636.log.json) |
Remarks:
-- If not specified, the models are trained 200 epochs.
+- The training details are recorded in the config names.
+
+- You can click algorithm name to obtain more information.
+
## Benchmarks
-In following tables, we only displayed ImageNet Linear Evaluation, COCO17 Object Detection and PASCAL VOC12 Aug Segmentation, you can click the model name above to get the comprehensive benchmark results.
+In following tables, we only displayed ImageNet Linear Evaluation, COCO17 Object Detection and PASCAL VOC12 Aug Segmentation, you can click algorithm name above to check the comprehensive benchmark results.
### ImageNet Linear Evaluation
@@ -42,7 +45,7 @@ If not specified, we use linear evaluation setting from [MoCo](http://openaccess
| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | | 39.65 |
| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | | 44.35 |
| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | | 58.92 |
-| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | SimSiam paper setting | 67.88 |
+| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | SimSiam paper setting | 68.20 |
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | SimSiam paper setting | 69.80 |
| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | SwAV paper setting | 70.55 |
@@ -59,7 +62,7 @@ In COCO17 Object detection task, we choose the evluation protocol from [MoCo](ht
| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | 37.5 | 33.7 |
| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | 37.9 | 34.2 |
| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | 38.7 | 34.9 |
-| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 38.3 | 34.4 |
+| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 38.6 | 34.6 |
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 38.8 | 34.9 |
| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | 40.2 | 36.3 |
@@ -78,6 +81,6 @@ In Pascal VOC12 Aug Segmentation task, we choose the evluation protocol from [MM
| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | 63.49 |
| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | 64.31 |
| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | 64.03 |
-| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 46.11 |
+| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 48.35 |
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 46.27 |
| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | 63.73 |
diff --git a/docs/zh_cn/model_zoo.md b/docs/zh_cn/model_zoo.md
index 50a24e8e..b3424f12 100644
--- a/docs/zh_cn/model_zoo.md
+++ b/docs/zh_cn/model_zoo.md
@@ -1,10 +1,10 @@
-# Model Zoo
+# 模型库
-All models and benchmarks results are recorded below.
+所有模型和部分基准测试如下。
-## Pre-trained models
+## 预训练模型
-| Algorithm | Config | Download |
+| 算法 | 配置文件 | 下载链接 |
| ------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [BYOL](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/README.md) | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k_20211213-30dbaef1.pth) | [log](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k_20211111_212813.log.json) |
| | [byol_resnet50_8xb32-accum16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k_20211213-47673e22.pth) | [log](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k_20211129_163841.log.json) |
@@ -16,41 +16,44 @@ All models and benchmarks results are recorded below.
| [Relative Location](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/README.md) | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20211213-cdd3162f.pth) | [log](https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20210930_144754.log.json) |
| [Rotation Prediction](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/README.md) | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20211213-513972ac.pth) | [log](https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20210930_151459.log.json) |
| [SimCLR](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/README.md) | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k_20211213-d0e53669.pth) |
-| [SimSiam](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/README.md) | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20211213-925d628c.pth) |
-| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20211213-b605f9f1.pth) |
+| [SimSiam](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/README.md) | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20211230-65a0eff4.pth) | [log](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20211225_132004.log.json) |
+| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20211213-b605f9f1.pth) | [log](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20211225_132031.log.json) |
| [SwAV](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/README.md) | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | [model](https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20211213-0028900c.pth) | [log](https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20211206_102636.log.json) |
-Remarks:
+备注:
-- If not specified, the models are trained 200 epochs.
-## Benchmarks
+- 训练细节记录在配置文件名中。
-In following tables, we only displayed ImageNet Linear Evaluation, COCO17 Object Detection and PASCAL VOC12 Aug Segmentation, you can click the model name above to get the comprehensive benchmark results.
+- 可以点击算法名获得更加全面的信息。
-### ImageNet Linear Evaluation
+## 基准测试
-If not specified, we use linear evaluation setting from [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf). Or the settings is mentioned in Remark.
+在下列表格中,我们只展示了基于 ImageNet 数据集的线性评估,COCO17 数据集的目标检测和 PASCAL VOC12 Aug 数据集的分割任务,您可以点击预训练模型表格中的算法名查看其它基准测试结果。
-| Algorithm | Config | Remarks | Top-1 (%) |
-| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------- | --------- |
-| BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | | 67.68 |
-| DeepCLuster | [deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py) | | 46.92 |
-| DenseCL | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | | 63.34 |
-| MoCo v2 | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | | 67.56 |
-| NPID | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | | 58.16 |
-| ODC | [odc_resnet50_8xb64-steplr-440e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k.py) | | 53.42 |
-| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | | 39.65 |
-| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | | 44.35 |
-| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | | 58.92 |
-| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | SimSiam paper setting | 67.88 |
-| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | SimSiam paper setting | 69.80 |
-| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | SwAV paper setting | 70.55 |
+### ImageNet 线性评估
-### COCO17 Object Detection
+如果没有特殊说明,下列实验采用 [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf) 的设置,或者采用的训练设置写在备注中。
-In COCO17 Object detection task, we choose the evluation protocol from [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf), with Mask-RCNN architecture, the results below are trained with the same [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/mmdetection/coco/mask_rcnn_r50_fpn_mstrain_1x_coco.py).
+| 算法 | 配置文件 | 备注 | Top-1 (%) |
+| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------- | --------- |
+| BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | | 67.68 |
+| DeepCLuster | [deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py) | | 46.92 |
+| DenseCL | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | | 63.34 |
+| MoCo v2 | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | | 67.56 |
+| NPID | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | | 58.16 |
+| ODC | [odc_resnet50_8xb64-steplr-440e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k.py) | | 53.42 |
+| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | | 39.65 |
+| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | | 44.35 |
+| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | | 58.92 |
+| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | SimSiam 论文设置 | 68.20 |
+| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | SimSiam 论文设置 | 69.80 |
+| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | SwAV 论文设置 | 70.55 |
-| Algorithm | Config | mAP (Box) | mAP (Mask) |
+### COCO17 目标检测
+
+在 COCO17 数据集的目标检测任务中,我们选用 [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf) 的评估设置,基于 Mask-RCNN 网络架构,下列结果通过同样的 [配置文件](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/mmdetection/coco/mask_rcnn_r50_fpn_mstrain_1x_coco.py) 训练得到。
+
+| 算法 | 配置文件 | mAP (Box) | mAP (Mask) |
| ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------- | ---------- |
| BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | 40.9 | 36.8 |
| DenseCL | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | | |
@@ -59,15 +62,15 @@ In COCO17 Object detection task, we choose the evluation protocol from [MoCo](ht
| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | 37.5 | 33.7 |
| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | 37.9 | 34.2 |
| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | 38.7 | 34.9 |
-| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 38.3 | 34.4 |
+| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 38.6 | 34.6 |
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 38.8 | 34.9 |
| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | 40.2 | 36.3 |
-### Pascal VOC12 Aug Segmentation
+### Pascal VOC12 Aug 分割
-In Pascal VOC12 Aug Segmentation task, we choose the evluation protocol from [MMSeg](https://github.com/open-mmlab/mmsegmentation), with FCN architecture, the results below are trained with the same [config](configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_512x512_20k_voc12aug.py).
+在 Pascal VOC12 Aug 分割任务中,我们选用 [MMSeg](https://github.com/open-mmlab/mmsegmentation) 的评估设置, 基于 FCN 网络架构, 下列结果通过同样的 [配置文件](configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_512x512_20k_voc12aug.py) 训练得到。
-| Algorithm | Config | mIOU |
+| 算法 | 配置文件 | mIOU |
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- |
| BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | 67.16 |
| DeepCLuster | [deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py) | 59.69 |
@@ -78,6 +81,6 @@ In Pascal VOC12 Aug Segmentation task, we choose the evluation protocol from [MM
| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | 63.49 |
| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | 64.31 |
| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | 64.03 |
-| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 46.11 |
+| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 48.35 |
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 46.27 |
| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | 63.73 |