[Doc] Add custom dataset tutorial (#522)

* [Doc] Add the tutorial for using custom dataset

* [Doc] Add coco example

* [Doc] Fix bug in command

* [Doc] Fix bug in command

* Update docs/en/user_guides/4_pretrain_custom_dataset.md

Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>

* [Doc] Update the doc according to the reviews

Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>
pull/582/head
Songyang Zhang 2022-10-19 11:07:21 +08:00 committed by Yixiao Fang
parent f8a33ae543
commit 5a0e0eedc4
4 changed files with 758 additions and 0 deletions

View File

@ -0,0 +1,378 @@
# Tutorial 4: Pretrain with Custom Dataset
- [Tutorial 4: Pretrain with Custom Dataset](#tutorial-4-pretrain-with-custom-dataset)
- [Train MAE on Custom Dataset](#train-mae-on-custom-dataset)
- [Get the path of custom dataset](#get-the-path-of-custom-dataset)
- [Choose one config as template](#choose-one-config-as-template)
- [Edit the dataset related config](#edit-the-dataset-related-config)
- [Train MAE on COCO Dataset](#train-mae-on-coco-dataset)
- [Train SimCLR on Custom Dataset](#train-simclr-on-custom-dataset)
- [Load Pre-trained Model to Speedup Convergence](#load-pre-trained-model-to-speedup-convergence)
In this tutorial, we provide some tips on how to conduct self-supervised learning on your own dataset(without the need of label).
## Train MAE on Custom Dataset
In MMSelfSup, We support the `CustomDataset` from MMClassification(similar to the `ImageFolder` in `torchvision`), which is able to read the images within the specified folder directly. You only need to prepare the path information of the custom dataset and edit the config.
### Get the path of custom dataset
It should be like `data/custom_dataset/`
### Choose one config as template
Here, we would like to use `configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py` as the example. We first copy this config file and rename it as `mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py`.
The content of this config is:
```python
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
'../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# dataset 8 x 512
train_dataloader = dict(batch_size=512, num_workers=8)
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
```
### Edit the dataset related config
The dataset related config is defined in `'../_base_/datasets/imagenet_mae.py'` in `_base_`. We then copy the content of dataset config file into our created file `mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py`.
- Then we remove the `'../_base_/datasets/imagenet_mae.py'` in `_base_`.
- Set the `dataset_type = 'mmcls.CustomDataset'`, and the path of the custom dataset ` data_root = /dataset/my_custom_dataset`.
- Remove the `ann_file` in `train_dataloader`, and edit the `data_prefix` if needed.
```{note}
The `CustomDataset` is implemented in MMClassification, and we set the `dataset_type=mmcls.CustomDataset`.
```
And the edited config will be like this:
```python
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
# '../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
# dataset 8 x 512
train_dataloader = dict(
batch_size=512,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
# ann_file='meta/train.txt', # removed if you don't have the annotation file
data_prefix=dict(img_path='./'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
```
By using the edited config file, you are able to train a self-supervised model with MAE algorithm on the custom dataset.
## Train MAE on COCO Dataset
```{note}
You need to install MMDetection to use the `mmdet.CocoDataset` follow this [documentation](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/get_started.md)
```
Follow the aforementioned idea, we also present an example of how to train MAE on COCO dataset. The edited file will be like this:
```python
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
# '../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmdet.CocoDataset'
data_root = 'data/coco/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
```
## Train SimCLR on Custom Dataset
We provide an example of using SimCLR on custom dataset, the main idea is similar to the [Train MAE on Custom Dataset
](#train-mae-on-custom-dataset).
The template config is `configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py`. And the edited config is:
```python
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/simclr.py',
# '../_base_/datasets/imagenet_simclr.py',
'../_base_/schedules/lars_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'
file_client_args = dict(backend='disk')
view_pipeline = [
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
# ann_file='meta/train.txt',
data_prefix=dict(img_path='./'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer
optimizer = dict(type='LARS', lr=0.3, momentum=0.9, weight_decay=1e-6)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'bn': dict(decay_mult=0, lars_exclude=True),
'bias': dict(decay_mult=0, lars_exclude=True),
# bn layer in ResNet block downsample module
'downsample.1': dict(decay_mult=0, lars_exclude=True),
}))
# runtime settings
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
```
## Load pre-trained model to speedup convergence
To speedup the convergence of the model on your own dataset. You may use the pre-trained model as the initialization for the model's weight. You just need to specify the url of the pre-trained model via command. You can find our provide pre-trained checkpoint here: [Model Zoo](https://mmselfsup.readthedocs.io/en/1.x/model_zoo.html)
```bash
bash tools/dist_train.sh ${CONFIG} ${GPUS} --cfg-options model.pretrained=${PRETRAIN}
```
- `CONFIG`: the edited config path
- `GPUS`: the number of GPU
- `PRETRAIN`: the checkpoint url of pre-trained model provided by MMSelfSup

View File

@ -7,6 +7,7 @@ Pretrain
1_config.md
2_dataset_prepare.md
3_pretrain.md
4_pretrain_custom_dataset.md
Downstream Tasks
**************

View File

@ -0,0 +1,378 @@
# Tutorial 4: Pretrain with Custom Dataset
- [Tutorial 4: Pretrain with Custom Dataset](#tutorial-4-pretrain-with-custom-dataset)
- [Train MAE on Custom Dataset](#train-mae-on-custom-dataset)
- [Get the path of custom dataset](#get-the-path-of-custom-dataset)
- [Choose one config as template](#choose-one-config-as-template)
- [Edit the dataset related config](#edit-the-dataset-related-config)
- [Train MAE on COCO Dataset](#train-mae-on-coco-dataset)
- [Train SimCLR on Custom Dataset](#train-simclr-on-custom-dataset)
- [Load Pre-trained Model to Speedup Convergence](#load-pre-trained-model-to-speedup-convergence)
In this tutorial, we provide some tips on how to conduct self-supervised learning on your own dataset(without the need of label).
## Train MAE on Custom Dataset
In MMSelfSup, We support the `CustomDataset` from MMClassification(similar to the `ImageFolder` in `torchvision`), which is able to read the images within the specified folder directly. You only need to prepare the path information of the custom dataset and edit the config.
### Get the path of custom dataset
It should be like `data/custom_dataset/`
### Choose one config as template
Here, we would like to use `configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py` as the example. We first copy this config file and rename it as `mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py`.
The content of this config is:
```python
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
'../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# dataset 8 x 512
train_dataloader = dict(batch_size=512, num_workers=8)
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
```
### Edit the dataset related config
The dataset related config is defined in `'../_base_/datasets/imagenet_mae.py'` in `_base_`. We then copy the content of dataset config file into our created file `mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py`.
- Then we remove the `'../_base_/datasets/imagenet_mae.py'` in `_base_`.
- Set the `dataset_type = 'mmcls.CustomDataset'`, and the path of the custom dataset ` data_root = /dataset/my_custom_dataset`.
- Remove the `ann_file` in `train_dataloader`, and edit the `data_prefix` if needed.
```{note}
The `CustomDataset` is implemented in MMClassification, and we set the `dataset_type=mmcls.CustomDataset`.
```
And the edited config will be like this:
```python
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
# '../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
# dataset 8 x 512
train_dataloader = dict(
batch_size=512,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
# ann_file='meta/train.txt', # removed if you don't have the annotation file
data_prefix=dict(img_path='./'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
```
By using the edited config file, you are able to train a self-supervised model with MAE algorithm on the custom dataset.
## Train MAE on COCO Dataset
```{note}
You need to install MMDetection to use the `mmdet.CocoDataset` follow this [documentation](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/get_started.md)
```
Follow the aforementioned idea, we also present an example of how to train MAE on COCO dataset. The edited file will be like this:
```python
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
# '../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmdet.CocoDataset'
data_root = 'data/coco/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
```
## Train SimCLR on Custom Dataset
We provide an example of using SimCLR on custom dataset, the main idea is similar to the [Train MAE on Custom Dataset
](#train-mae-on-custom-dataset).
The template config is `configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py`. And the edited config is:
```python
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/simclr.py',
# '../_base_/datasets/imagenet_simclr.py',
'../_base_/schedules/lars_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'
file_client_args = dict(backend='disk')
view_pipeline = [
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
# ann_file='meta/train.txt',
data_prefix=dict(img_path='./'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer
optimizer = dict(type='LARS', lr=0.3, momentum=0.9, weight_decay=1e-6)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'bn': dict(decay_mult=0, lars_exclude=True),
'bias': dict(decay_mult=0, lars_exclude=True),
# bn layer in ResNet block downsample module
'downsample.1': dict(decay_mult=0, lars_exclude=True),
}))
# runtime settings
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
```
## Load pre-trained model to speedup convergence
To speedup the convergence of the model on your own dataset. You may use the pre-trained model as the initialization for the model's weight. You just need to specify the url of the pre-trained model via command. You can find our provide pre-trained checkpoint here: [Model Zoo](https://mmselfsup.readthedocs.io/en/1.x/model_zoo.html)
```bash
bash tools/dist_train.sh ${CONFIG} ${GPUS} --cfg-options model.pretrained=${PRETRAIN}
```
- `CONFIG`: the edited config path
- `GPUS`: the number of GPU
- `PRETRAIN`: the checkpoint url of pre-trained model provided by MMSelfSup

View File

@ -7,6 +7,7 @@ Pretrain
1_config.md
2_dataset_prepare.md
3_pretrain.md
4_pretrain_custom_dataset.md
Downstream Tasks
**************