Bump version to v1.0.0 (#743)
* Bump version to v1.0.0 * fix lint * update * update * update dockerfile * update font color * update readtherdocs * update annoucement * update * updatepull/746/head v1.0.0
parent
db6fb76cf1
commit
6ae4ee5f74
19
README.md
19
README.md
|
@ -31,9 +31,11 @@
|
|||
[🆕Update News](https://mmselfsup.readthedocs.io/en/latest/notes/changelog.html) |
|
||||
[🤔Reporting Issues](https://github.com/open-mmlab/mmselfsup/issues/new/choose)
|
||||
|
||||
🌟 MMSelfSup will be integrated into MMPreTrain, which is a newly upgraded open-source framework for visual pre-training. It has set out to provide multiple powerful pre-trained backbones and support different pre-training strategies.
|
||||
<img src="https://user-images.githubusercontent.com/36138628/230306412-43a5f316-bd54-4d2a-b196-210656e74683.png" width="500"/>
|
||||
|
||||
:point_right: **MMPreTrain 1.0 branch is in trial, welcome every to [try it](https://github.com/open-mmlab/mmclassification/tree/pretrain) and [discuss with us](https://github.com/open-mmlab/mmclassification/discussions)!** :point_left:
|
||||
🌟 MMPreTrain is a newly upgraded open-source framework for visual pre-training. It has set out to provide multiple powerful pre-trained backbones and support different pre-training strategies.
|
||||
|
||||
:point_right: **MMPreTrain 1.0 branch is in trial, welcome every to [try it](https://github.com/open-mmlab/mmclassification) and [discuss with us](https://github.com/open-mmlab/mmclassification/discussions)!** :point_left:
|
||||
|
||||
</div>
|
||||
|
||||
|
@ -67,7 +69,7 @@ English | [简体中文](README_zh-CN.md)
|
|||
|
||||
MMSelfSup is an open source self-supervised representation learning toolbox based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
|
||||
|
||||
The master branch works with **PyTorch 1.6** or higher.
|
||||
The master branch works with **PyTorch 1.8** or higher.
|
||||
|
||||
### Major features
|
||||
|
||||
|
@ -89,7 +91,14 @@ The master branch works with **PyTorch 1.6** or higher.
|
|||
|
||||
## What's New
|
||||
|
||||
**The default branch has been switched to `1.x` from `master`, and we encourage users to migrate to the latest version, though it comes with some cost. Please refer to [Migration Guide](https://mmselfsup.readthedocs.io/en/latest/migration.html) for more details.**
|
||||
**MMSelfSup v1.0.0 was released based on `main` branch. Please refer to [Migration Guide](https://mmselfsup.readthedocs.io/en/latest/migration.html) for more details.**
|
||||
|
||||
MMSelfSup **v1.0.0** was released in 06/04/2023.
|
||||
|
||||
- Support `PixMIM`.
|
||||
- Support `DINO` in `projects/dino/`.
|
||||
- Refactor file io interface.
|
||||
- Refine documentations.
|
||||
|
||||
MMSelfSup **v1.0.0rc6** was released in 10/02/2023.
|
||||
|
||||
|
@ -165,7 +174,7 @@ Supported algorithms:
|
|||
- [x] [CAE (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/cae)
|
||||
- [x] [MILAN (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/milan)
|
||||
- [x] [BEiT v2 (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/beitv2)
|
||||
- [x] [EVA (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/eva)
|
||||
- [x] [EVA (CVPR'2023)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/eva)
|
||||
- [x] [MixMIM (ArXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/mixmim)
|
||||
- [x] [PixMIM (ArXiv'2023)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/pixmim)
|
||||
|
||||
|
|
|
@ -31,11 +31,11 @@
|
|||
[🆕更新日志](https://mmselfsup.readthedocs.io/zh_CN/latest/notes/changelog.html) |
|
||||
[🤔报告问题](https://github.com/open-mmlab/mmselfsup/issues/new/choose)
|
||||
|
||||
🌟 MMSelfSup 将整合进 MMPreTrain,一个全新升级的预训练开源算法框架。
|
||||
<img src="https://user-images.githubusercontent.com/36138628/230306412-43a5f316-bd54-4d2a-b196-210656e74683.png" width="500"/>
|
||||
|
||||
MMPreTrain 旨在提供各种强大的预训练主干网络,并支持了不同的预训练策略。
|
||||
🌟 MMPreTrain 旨在提供各种强大的预训练主干网络,并支持了不同的预训练策略。
|
||||
|
||||
:point_right: **MMPreTrain 1.0 版本即将正式发布,欢迎大家 [试用](https://github.com/open-mmlab/mmclassification/tree/pretrain) 并 [参与讨论](https://github.com/open-mmlab/mmclassification/discussions)!** :point_left:
|
||||
:point_right: **MMPreTrain 1.0 版本即将正式发布,欢迎大家 [试用](https://github.com/open-mmlab/mmclassification) 并 [参与讨论](https://github.com/open-mmlab/mmclassification/discussions)!** :point_left:
|
||||
|
||||
</div>
|
||||
|
||||
|
@ -71,7 +71,7 @@ MMPreTrain 旨在提供各种强大的预训练主干网络,并支持了不同
|
|||
|
||||
MMSelfSup 是一个基于 PyTorch 实现的开源自监督表征学习工具箱,是 [OpenMMLab](https://openmmlab.com/) 项目成员之一。
|
||||
|
||||
主分支代码支持 **PyTorch 1.6** 及以上的版本。
|
||||
主分支代码支持 **PyTorch 1.8** 及以上的版本。
|
||||
|
||||
### 主要特性
|
||||
|
||||
|
@ -93,7 +93,14 @@ MMSelfSup 是一个基于 PyTorch 实现的开源自监督表征学习工具箱
|
|||
|
||||
## 更新
|
||||
|
||||
**默认分支已经从 `master` 切换到 `1.x`。我们鼓励用户迁移到最新版本,请参考 [迁移指南](https://mmselfsup.readthedocs.io/zh_CN/1.x/migration.html) 以了解更多细节。**
|
||||
**MMSelfSup v1.0.0 正式版已发布,请参考 [迁移指南](https://mmselfsup.readthedocs.io/zh_CN/1.x/migration.html) 以了解更多细节。**
|
||||
|
||||
**v1.0.0** 版本已经在 2023.4.6 发布。
|
||||
|
||||
- 支持了 `PixMIM` 自监督算法
|
||||
- 在 `projects/dino/` 支持了 `DINO`
|
||||
- 重构 file io 接口
|
||||
- 完善部分文档
|
||||
|
||||
**v1.0.0rc6** 版本已经在 2023.2.10 发布。
|
||||
|
||||
|
@ -169,7 +176,7 @@ Useful Tools
|
|||
- [x] [CAE (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/cae)
|
||||
- [x] [MILAN (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/milan)
|
||||
- [x] [BEiT v2 (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/beitv2)
|
||||
- [x] [EVA (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/eva)
|
||||
- [x] [EVA (CVPR'2023)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/eva)
|
||||
- [x] [MixMIM (ArXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/mixmim)
|
||||
- [x] [PixMIM (ArXiv'2023)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/pixmim)
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y ffmpeg libsm6 libxext6 git ninja-build
|
|||
|
||||
# Install MMEngine and MMCV
|
||||
RUN pip install openmim
|
||||
RUN mim install mmengine "mmcv>=2.0.0rc1"
|
||||
RUN mim install mmengine "mmcv>=2.0.0"
|
||||
RUN mim install mmsegmentation mmdet
|
||||
|
||||
# Install MMSelfSup
|
||||
|
@ -22,5 +22,4 @@ RUN conda clean --all
|
|||
RUN git clone https://github.com/open-mmlab/mmselfsup.git /mmselfsup
|
||||
WORKDIR /mmselfsup
|
||||
ENV FORCE_CUDA="1"
|
||||
RUN git checkout 1.x
|
||||
RUN pip install --no-cache-dir -e .
|
||||
|
|
|
@ -104,13 +104,13 @@ html_theme_options = {
|
|||
'children': [
|
||||
{
|
||||
'name': 'MMSelfSup 0.x',
|
||||
'url': 'https://mmselfsup.readthedocs.io/en/latest/',
|
||||
'description': 'Main branch docs'
|
||||
'url': 'https://mmselfsup.readthedocs.io/en/0.x/',
|
||||
'description': '0.x branch docs'
|
||||
},
|
||||
{
|
||||
'name': 'MMSelfSup 1.x',
|
||||
'url': 'https://mmselfsup.readthedocs.io/en/1.x/',
|
||||
'description': '1.x branch docs'
|
||||
'url': 'https://mmselfsup.readthedocs.io/en/latest/',
|
||||
'description': 'Main branch docs'
|
||||
},
|
||||
],
|
||||
'active':
|
||||
|
|
|
@ -2,6 +2,41 @@
|
|||
|
||||
## MMSelfSup
|
||||
|
||||
### v1.0.0 (06/04/2023)
|
||||
|
||||
#### Highlight
|
||||
|
||||
- Support `PixMIM`.
|
||||
- Support `DINO` in `projects/dino/`.
|
||||
|
||||
#### New Features
|
||||
|
||||
- Support `PixMIM` ([#721](https://github.com/open-mmlab/mmselfsup/pull/721))
|
||||
- Support `DINO` in `projects/dino/` ([#658](https://github.com/open-mmlab/mmselfsup/pull/658))
|
||||
- Support auto import modules from registry ([#660](https://github.com/open-mmlab/mmselfsup/pull/660))
|
||||
|
||||
#### Bug Fixes
|
||||
|
||||
- Fix registry import error of MMDet ([#732](https://github.com/open-mmlab/mmselfsup/pull/732))
|
||||
- Fix local-rank in pytorch2.0 ([#728](https://github.com/open-mmlab/mmselfsup/pull/728))
|
||||
- Update MAE 300e pt results ([#722](https://github.com/open-mmlab/mmselfsup/pull/722))
|
||||
- Add missing data preprocessor in tsne configs ([#715](https://github.com/open-mmlab/mmselfsup/pull/715))
|
||||
- Fix the bug in shape bias ([#717](https://github.com/open-mmlab/mmselfsup/pull/717))
|
||||
- Fix T-SNE TypeError ([#708](https://github.com/open-mmlab/mmselfsup/pull/708))
|
||||
|
||||
#### Improvements
|
||||
|
||||
- Update CI ([#742](https://github.com/open-mmlab/mmselfsup/pull/742), [#739](https://github.com/open-mmlab/mmselfsup/pull/739))
|
||||
- Remove file_client_args and apply new interface of fileio ([#662](https://github.com/open-mmlab/mmselfsup/pull/662))
|
||||
|
||||
#### Docs
|
||||
|
||||
- Update doc links ([#738](https://github.com/open-mmlab/mmselfsup/pull/738))
|
||||
- Translate customize_runtime.md ([#734](https://github.com/open-mmlab/mmselfsup/pull/734))
|
||||
- Add media links and mmpretrain announcement ([#730](https://github.com/open-mmlab/mmselfsup/pull/730), [#693](https://github.com/open-mmlab/mmselfsup/pull/693))
|
||||
- Translate two docs ([#725](https://github.com/open-mmlab/mmselfsup/pull/725))
|
||||
- Translate docs ([#723](https://github.com/open-mmlab/mmselfsup/pull/723))
|
||||
|
||||
### v1.0.0rc6 (10/02/2023)
|
||||
|
||||
The `master` branch is still 0.x version and we will checkout a new `1.x` branch to release 1.x version. The two versions will be maintained simultaneously in the future.
|
||||
|
|
|
@ -12,7 +12,8 @@ Compatible MMEngine, MMCV, MMClassification, MMDetection and MMSegmentation vers
|
|||
|
||||
| MMSelfSup version | MMEngine version | MMCV version | MMClassification version | MMSegmentation version | MMDetection version |
|
||||
| :---------------: | :-------------------------: | :------------------------: | :-------------------------: | :--------------------: | :-----------------: |
|
||||
| 1.0.0rc6 (1.x) | mmengine >= 0.4.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc5, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0 (main) | mmengine >= 0.4.0, \< 1.0.0 | mmcv >= 2.0.0rc4, \< 2.1.0 | mmcls >= 1.0.0rc6, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0rc6 | mmengine >= 0.4.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc5, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0rc5 | mmengine >= 0.4.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc5, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0rc4 | mmengine >= 0.3.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc4, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0rc3 | mmengine >= 0.3.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc0, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
|
|
|
@ -42,9 +42,9 @@ Typically, SSL is considered as the pre-training algorithm for various model arc
|
|||
|
||||
- For the pre-training stage, we refer the user to [Pre-train](user_guides/3_pretrain.md) for using various SSL algorithms to obtain the pre-trained model.
|
||||
|
||||
- For the benchmark stage, we refer the user to [Benchmark](https://mmselfsup.readthedocs.io/en/dev-1.x/user_guides/#downstream-tasks) for examples and usage of applying the pre-trained models in many downstream tasks.
|
||||
- For the benchmark stage, we refer the user to [Benchmark](https://mmselfsup.readthedocs.io/en/latest/user_guides/#downstream-tasks) for examples and usage of applying the pre-trained models in many downstream tasks.
|
||||
|
||||
- Also, we provide some analysis tools and visualization tools [Useful Tools](https://mmselfsup.readthedocs.io/en/dev-1.x/user_guides/#useful-tools) to help diagnose the algorithm.
|
||||
- Also, we provide some analysis tools and visualization tools [Useful Tools](https://mmselfsup.readthedocs.io/en/latest/user_guides/#useful-tools) to help diagnose the algorithm.
|
||||
|
||||
### Learn SSL with MMSelfSup
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@ mim install 'mmsegmentation>=1.0.0rc0'
|
|||
|
||||
It is very easy to install the package.
|
||||
|
||||
Besides, please refer to MMSegmentation for [installation](https://mmsegmentation.readthedocs.io/en/dev-1.x/get_started.html) and [data preparation](https://mmsegmentation.readthedocs.io/en/dev-1.x/user_guides/2_dataset_prepare.html).
|
||||
Besides, please refer to MMSegmentation for [installation](https://mmsegmentation.readthedocs.io/en/latest/get_started.html) and [data preparation](https://mmsegmentation.readthedocs.io/en/latest/user_guides/2_dataset_prepare.html).
|
||||
|
||||
## Train
|
||||
|
||||
|
|
|
@ -100,13 +100,13 @@ html_theme_options = {
|
|||
'children': [
|
||||
{
|
||||
'name': 'MMSelfSup 0.x',
|
||||
'url': 'https://mmselfsup.readthedocs.io/zh_CN/latest/',
|
||||
'description': 'Main 分支文档'
|
||||
'url': 'https://mmselfsup.readthedocs.io/zh_CN/0.x/',
|
||||
'description': '0.x 分支文档'
|
||||
},
|
||||
{
|
||||
'name': 'MMSelfSup 1.x',
|
||||
'url': 'https://mmselfsup.readthedocs.io/zh_CN/1.x/',
|
||||
'description': '1.x 分支文档'
|
||||
'url': 'https://mmselfsup.readthedocs.io/zh_CN/latest/',
|
||||
'description': 'Main 分支文档'
|
||||
},
|
||||
],
|
||||
'active':
|
||||
|
|
|
@ -2,6 +2,41 @@
|
|||
|
||||
## MMSelfSup
|
||||
|
||||
### v1.0.0 (06/04/2023)
|
||||
|
||||
#### Highlight
|
||||
|
||||
- 支持了 `PixMIM`
|
||||
- 在 `projects/dino/` 支持了 `DINO`
|
||||
|
||||
#### New Features
|
||||
|
||||
- 支持了 `PixMIM` ([#721](https://github.com/open-mmlab/mmselfsup/pull/721))
|
||||
- 在 `projects/dino/` 支持了 `DINO` ([#658](https://github.com/open-mmlab/mmselfsup/pull/658))
|
||||
- 支持自动模块导入 ([#660](https://github.com/open-mmlab/mmselfsup/pull/660))
|
||||
|
||||
#### Bug Fixes
|
||||
|
||||
- 修复注册错误 ([#732](https://github.com/open-mmlab/mmselfsup/pull/732))
|
||||
- 修复 local-rank 在 pytorch2.0 ([#728](https://github.com/open-mmlab/mmselfsup/pull/728))
|
||||
- 更新 MAE 结果 ([#722](https://github.com/open-mmlab/mmselfsup/pull/722))
|
||||
- 修复 t-SNE 配置文件缺漏项 ([#715](https://github.com/open-mmlab/mmselfsup/pull/715))
|
||||
- 修复 shape bias 的 bug ([#717](https://github.com/open-mmlab/mmselfsup/pull/717))
|
||||
- 修复 T-SNE 类型错误 ([#708](https://github.com/open-mmlab/mmselfsup/pull/708))
|
||||
|
||||
#### Improvements
|
||||
|
||||
- 更新 CI ([#742](https://github.com/open-mmlab/mmselfsup/pull/742), [#739](https://github.com/open-mmlab/mmselfsup/pull/739))
|
||||
- 更新 file io 接口([#662](https://github.com/open-mmlab/mmselfsup/pull/662))
|
||||
|
||||
#### Docs
|
||||
|
||||
- 更新文档链接 ([#738](https://github.com/open-mmlab/mmselfsup/pull/738))
|
||||
- 翻译 customize_runtime.md ([#734](https://github.com/open-mmlab/mmselfsup/pull/734))
|
||||
- 添加社区链接和相关通知 ([#730](https://github.com/open-mmlab/mmselfsup/pull/730), [#693](https://github.com/open-mmlab/mmselfsup/pull/693))
|
||||
- 翻译文档 ([#725](https://github.com/open-mmlab/mmselfsup/pull/725))
|
||||
- 翻译文档 ([#723](https://github.com/open-mmlab/mmselfsup/pull/723))
|
||||
|
||||
### v1.0.0rc6 (10/02/2023)
|
||||
|
||||
`master` 仍然是 0.x 版本,我们将会 checkout 一个新的 `1.x` 用来发布 1.x 版本。 未来我们会同时维护两个版本。
|
||||
|
|
|
@ -12,7 +12,8 @@ MMCV, MMClassification, MMDetection and MMSegmentation 的版本兼容性如下
|
|||
|
||||
| MMSelfSup version | MMEngine version | MMCV version | MMClassification version | MMSegmentation version | MMDetection version |
|
||||
| :---------------: | :-------------------------: | :------------------------: | :-------------------------: | :--------------------: | :-----------------: |
|
||||
| 1.0.0rc6 (1.x) | mmengine >= 0.4.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc5, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0 (main) | mmengine >= 0.4.0, \< 1.0.0 | mmcv >= 2.0.0rc4, \< 2.1.0 | mmcls >= 1.0.0rc6, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0rc6 | mmengine >= 0.4.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc5, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0rc5 | mmengine >= 0.4.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc5, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0rc4 | mmengine >= 0.3.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc4, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
| 1.0.0rc3 | mmengine >= 0.3.0, \< 1.0.0 | mmcv >= 2.0.0rc1, \< 2.1.0 | mmcls >= 1.0.0rc0, \< 1.1.0 | mmseg >= 1.0.0rc0 | mmdet >= 3.0.0rc0 |
|
||||
|
|
|
@ -41,9 +41,9 @@
|
|||
|
||||
- 对于**预训练阶段**,我们推荐你参考[Pre-train](user_guides/3_pretrain.md) 来尝试各类预训练算法,获得预训练模型。
|
||||
|
||||
- 对于**下游任务迁移学习阶段**,我们推荐你参考[Benchmark](https://mmselfsup.readthedocs.io/en/dev-1.x/user_guides/#downstream-tasks) 当中提供的示例,来使用预训练模型来尝试各种下游任务。
|
||||
- 对于**下游任务迁移学习阶段**,我们推荐你参考[Benchmark](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/#downstream-tasks) 当中提供的示例,来使用预训练模型来尝试各种下游任务。
|
||||
|
||||
- 除此之外,我们也提供了多种分析工具和可视化工具[Useful Tools](https://mmselfsup.readthedocs.io/en/dev-1.x/user_guides/#useful-tools)来帮助用户更方便地对算法进行诊断和分析。
|
||||
- 除此之外,我们也提供了多种分析工具和可视化工具[Useful Tools](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/#useful-tools)来帮助用户更方便地对算法进行诊断和分析。
|
||||
|
||||
### 基于MMSelfSup学习自监督算法
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@ mim install 'mmsegmentation>=1.0.0rc0'
|
|||
|
||||
非常容易安装这个包。
|
||||
|
||||
此外,请参考 MMSegmentation 的[安装](https://mmsegmentation.readthedocs.io/en/dev-1.x/get_started.html)和[数据准备](https://mmsegmentation.readthedocs.io/en/dev-1.x/user_guides/2_dataset_prepare.html)。
|
||||
此外,请参考 MMSegmentation 的[安装](https://mmsegmentation.readthedocs.io/zh_CN/latest/get_started.html)和[数据准备](https://mmsegmentation.readthedocs.io/zh_CN/latest/user_guides/2_dataset_prepare.html)。
|
||||
|
||||
## 训练
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ mmcv_minimum_version = '2.0.0rc4'
|
|||
mmcv_maximum_version = '2.1.0'
|
||||
mmcv_version = digit_version(mmcv.__version__)
|
||||
|
||||
mmcls_minimum_version = '1.0.0rc5'
|
||||
mmcls_minimum_version = '1.0.0rc6'
|
||||
mmcls_maximum_version = '1.1.0'
|
||||
mmcls_version = digit_version(mmcls.__version__)
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Copyright (c) Open-MMLab. All rights reserved.
|
||||
|
||||
__version__ = '1.0.0rc6'
|
||||
__version__ = '1.0.0'
|
||||
|
||||
|
||||
def parse_version_info(version_str):
|
||||
|
|
|
@ -22,3 +22,4 @@ Import:
|
|||
- configs/selfsup/beitv2/metafile.yml
|
||||
- configs/selfsup/eva/metafile.yml
|
||||
- configs/selfsup/mixmim/metafile.yml
|
||||
- configs/selfsup/pixmim/metafile.yml
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
mmcls>=1.0.0rc5,<1.1.0
|
||||
mmcv>=2.0.0rc1,<2.1.0
|
||||
mmcls>=1.0.0rc6,<1.1.0
|
||||
mmcv>=2.0.0rc4,<2.1.0
|
||||
# mmdet>=3.0.0rc0,<3.1.0
|
||||
mmengine>=0.4.0,<1.0.0
|
||||
# mmsegmentation>=1.0.0rc0,<1.1.0
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
mmcls>=1.0.0rc5
|
||||
mmcv>=2.0.0rc1
|
||||
mmcls>=1.0.0rc6
|
||||
mmcv>=2.0.0rc4
|
||||
mmdet>=3.0.0rc0
|
||||
mmengine>=0.4.0
|
||||
mmselfsup>=1.0.0rc1
|
||||
mmselfsup>=1.0.0rc6
|
||||
scikit-learn
|
||||
torch
|
||||
torchvision
|
||||
|
|
|
@ -2,7 +2,7 @@ attrs
|
|||
einops
|
||||
future
|
||||
matplotlib
|
||||
mmcls>=1.0.0rc5,<1.1.0
|
||||
mmcls>=1.0.0rc6,<1.1.0
|
||||
numpy
|
||||
packaging
|
||||
scikit-learn
|
||||
|
|
Loading…
Reference in New Issue