[Feature] Support BEiT v2 (#627)
* update * update configs * update model zoo * fix lint * update configpull/630/head
parent
a4b96dc662
commit
83e0917482
|
@ -123,7 +123,7 @@ Supported algorithms:
|
|||
- [x] [ODC (CVPR'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/odc)
|
||||
- [x] [MoCo v1 (CVPR'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/mocov1)
|
||||
- [x] [SimCLR (ICML'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/simclr)
|
||||
- [x] [MoCo v2 (ArXiv'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/byol)
|
||||
- [x] [MoCo v2 (arXiv'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/byol)
|
||||
- [x] [BYOL (NeurIPS'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/mocov2)
|
||||
- [x] [SwAV (NeurIPS'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/swav)
|
||||
- [x] [DenseCL (CVPR'2021)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/densecl)
|
||||
|
@ -134,8 +134,9 @@ Supported algorithms:
|
|||
- [x] [MAE (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/mae)
|
||||
- [x] [SimMIM (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/simmim)
|
||||
- [x] [MaskFeat (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/maskfeat)
|
||||
- [x] [CAE (ArXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/cae)
|
||||
- [x] [MILAN (ArXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/milan)
|
||||
- [x] [CAE (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/cae)
|
||||
- [x] [MILAN (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/milan)
|
||||
- [x] [BEiT v2 (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/beitv2)
|
||||
|
||||
More algorithms are in our plan.
|
||||
|
||||
|
|
|
@ -123,7 +123,7 @@ Useful Tools
|
|||
- [x] [ODC (CVPR'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/odc)
|
||||
- [x] [MoCo v1 (CVPR'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/mocov1)
|
||||
- [x] [SimCLR (ICML'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/simclr)
|
||||
- [x] [MoCo v2 (ArXiv'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/byol)
|
||||
- [x] [MoCo v2 (arXiv'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/byol)
|
||||
- [x] [BYOL (NeurIPS'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/mocov2)
|
||||
- [x] [SwAV (NeurIPS'2020)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/swav)
|
||||
- [x] [DenseCL (CVPR'2021)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/densecl)
|
||||
|
@ -134,8 +134,9 @@ Useful Tools
|
|||
- [x] [MAE (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/mae)
|
||||
- [x] [SimMIM (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/simmim)
|
||||
- [x] [MaskFeat (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/maskfeat)
|
||||
- [x] [CAE (ArXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/cae)
|
||||
- [x] [MILAN (ArXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/milan)
|
||||
- [x] [CAE (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/cae)
|
||||
- [x] [MILAN (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/milan)
|
||||
- [x] [BEiT v2 (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/beitv2)
|
||||
|
||||
更多的算法实现已经在我们的计划中。
|
||||
|
||||
|
|
|
@ -35,15 +35,15 @@ Here, we report the results of the model on ImageNet, the details are below:
|
|||
</tr>
|
||||
</thead>
|
||||
<tr>
|
||||
<td>BEiT</td>
|
||||
<td>BEiT v2</td>
|
||||
<td>ViT-base</td>
|
||||
<td>300</td>
|
||||
<td>2048</td>
|
||||
<td>/</td>
|
||||
<td></td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k.py'>config</a> | <a href=''>model</a> | <a href=''>log</a></td>
|
||||
<td>85.0</td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221206_012130.json'>log</a></td>
|
||||
<td>/</td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beitv2/classification/vit-base-p16_ft-8xb128-coslr-100e_in1k.py'>config</a> | <a href=''>model</a> | <a href=''>log</a></td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beitv2/classification/vit-base-p16_ft-8xb128-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221211_155017.json'>log</a></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
_base_ = 'beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k.py'
|
||||
|
||||
# drop_path_rate: 0. for 300 epochs and 0.1 for 1600 epochs.
|
||||
model = dict(
|
||||
backbone=dict(drop_path_rate=0.1),
|
||||
neck=dict(drop_path_rate=0.1),
|
||||
)
|
||||
|
||||
# optimizer wrapper
|
||||
# betas: (0.9, 0.98) for 300 epochs and (0.9, 0.999) for 1600 epochs.
|
||||
optimizer = dict(
|
||||
type='AdamW', lr=1.5e-3, betas=(0.9, 0.999), weight_decay=0.05)
|
||||
optim_wrapper = dict(
|
||||
type='AmpOptimWrapper', loss_scale='dynamic', optimizer=optimizer)
|
||||
|
||||
# learning rate scheduler
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR',
|
||||
start_factor=1e-4,
|
||||
by_epoch=True,
|
||||
begin=0,
|
||||
end=10,
|
||||
convert_to_iter_based=True),
|
||||
dict(
|
||||
type='CosineAnnealingLR',
|
||||
eta_min=1e-5,
|
||||
by_epoch=True,
|
||||
begin=10,
|
||||
end=1600,
|
||||
convert_to_iter_based=True)
|
||||
]
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1600)
|
|
@ -6,8 +6,8 @@ _base_ = [
|
|||
]
|
||||
|
||||
# optimizer wrapper
|
||||
# betas: (0.9, 0.98) for 300 epochs and (0.9, 0.999) for 1600 epochs.
|
||||
optimizer = dict(type='AdamW', lr=1.5e-3, betas=(0.9, 0.98), weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='AmpOptimWrapper',
|
||||
loss_scale='dynamic',
|
||||
|
|
|
@ -14,7 +14,7 @@ model = dict(
|
|||
img_size=224,
|
||||
patch_size=16,
|
||||
# 0.2 for 1600 epochs pretrained models and 0.1 for 300 epochs.
|
||||
drop_path_rate=0.2,
|
||||
drop_path_rate=0.1,
|
||||
avg_token=True,
|
||||
output_cls_token=False,
|
||||
use_abs_pos_emb=False,
|
||||
|
@ -86,7 +86,7 @@ optim_wrapper = dict(
|
|||
betas=(0.9, 0.999),
|
||||
model_type='vit',
|
||||
# 0.6 for 1600 epochs pretrained models and 0.65 for 300 epochs
|
||||
layer_decay_rate=0.6),
|
||||
layer_decay_rate=0.65),
|
||||
constructor='mmselfsup.LearningRateDecayOptimWrapperConstructor',
|
||||
paramwise_cfg=dict(
|
||||
_delete_=True,
|
||||
|
|
|
@ -20,7 +20,7 @@ Models:
|
|||
Batch Size: 2048
|
||||
Results: null
|
||||
Config: configs/selfsup/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k.py
|
||||
Weights:
|
||||
Weights: https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth
|
||||
Downstream:
|
||||
- Type: Image Classification
|
||||
Metadata:
|
||||
|
@ -30,6 +30,6 @@ Models:
|
|||
- Task: Fine-tuning
|
||||
Dataset: ImageNet-1k
|
||||
Metrics:
|
||||
Top 1 Accuracy:
|
||||
Config:
|
||||
Weights:
|
||||
Top 1 Accuracy: 85.0
|
||||
Config: configs/selfsup/beitv2/classification/vit-base-p16_ft-8xb128-coslr-100e_in1k.py
|
||||
Weights: https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth
|
||||
|
|
|
@ -397,8 +397,8 @@ ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. T
|
|||
<td>/</td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beit/classification/vit-base-p16_ft-8xb128-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beit/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221128-0ca393e9.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beit/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221127_162126.json'>log</a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>MILAN</td>
|
||||
<tr>
|
||||
<td>MILAN</td>
|
||||
<td>ViT-base</td>
|
||||
<td>400</td>
|
||||
<td>4096</td>
|
||||
|
@ -407,7 +407,17 @@ ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. T
|
|||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221123_112721.json'>log</a></td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/milan/classification/vit-base-p16_linear-8xb2048-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221129-74ac94fa.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221125_031826.json'>log</a></td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/milan/classification/vit-base-p16_linear-8xb2048-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221129-03f26f85.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221124_215401.json'>log</a></td>
|
||||
|
||||
</tr>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>BEiT v2</td>
|
||||
<td>ViT-base</td>
|
||||
<td>300</td>
|
||||
<td>2048</td>
|
||||
<td>/</td>
|
||||
<td>85.0</td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221206_012130.json'>log</a></td>
|
||||
<td>/</td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beitv2/classification/vit-base-p16_ft-8xb128-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221211_155017.json'>log</a></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
|
|
@ -398,7 +398,7 @@ ImageNet 有多个版本,不过最常用的是 ILSVRC 2012。我们提供了
|
|||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beit/classification/vit-base-p16_ft-8xb128-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beit/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221128-0ca393e9.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beit/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221127_162126.json'>log</a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>MILAN</td>
|
||||
<td>MILAN</td>
|
||||
<td>ViT-base</td>
|
||||
<td>400</td>
|
||||
<td>4096</td>
|
||||
|
@ -407,7 +407,17 @@ ImageNet 有多个版本,不过最常用的是 ILSVRC 2012。我们提供了
|
|||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221123_112721.json'>log</a></td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/milan/classification/vit-base-p16_linear-8xb2048-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221129-74ac94fa.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221125_031826.json'>log</a></td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/milan/classification/vit-base-p16_linear-8xb2048-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221129-03f26f85.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221124_215401.json'>log</a></td>
|
||||
|
||||
</tr>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>BEiT v2</td>
|
||||
<td>ViT-base</td>
|
||||
<td>300</td>
|
||||
<td>2048</td>
|
||||
<td>/</td>
|
||||
<td>85.0</td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221206_012130.json'>log</a></td>
|
||||
<td>/</td>
|
||||
<td><a href='https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/configs/selfsup/beitv2/classification/vit-base-p16_ft-8xb128-coslr-100e_in1k.py'>config</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth'>model</a> | <a href='https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221211_155017.json'>log</a></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
|
|
@ -19,3 +19,4 @@ Import:
|
|||
- configs/selfsup/maskfeat/metafile.yml
|
||||
- configs/selfsup/beit/metafile.yml
|
||||
- configs/selfsup/milan/metafile.yaml
|
||||
- configs/selfsup/beitv2/metafile.yml
|
||||
|
|
Loading…
Reference in New Issue