[Docs] translate prepare_data.md into Chinese (#166)

* [Docs] translate prepare_data.md into Chinese

* [Docs] fix typo in prepare_data.md
pull/168/head
Jiahao Xie 2022-01-04 10:28:39 +08:00 committed by GitHub
parent 128a11669c
commit 86ca16c766
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 36 additions and 36 deletions

View File

@ -1,6 +1,6 @@
# Prepare Datasets
MMSelfsup supports multiple datasets. Please follow the corresponding guidelines for data preparation. It is recommended to symlink your dataset root to `$MMSELFSUP/data`. If your folder structure is different, you may need to change the corresponding paths in config files.
MMSelfSup supports multiple datasets. Please follow the corresponding guidelines for data preparation. It is recommended to symlink your dataset root to `$MMSELFSUP/data`. If your folder structure is different, you may need to change the corresponding paths in config files.
- [Prepare ImageNet](#prepare-imagenet)
- [Prepare Place205](#prepare-place205)

View File

@ -1,15 +1,15 @@
# Prepare Datasets
# 准备数据集
MMSelfsup supports multiple datasets. Please follow the corresponding guidelines for data preparation. It is recommended to symlink your dataset root to `$MMSELFSUP/data`. If your folder structure is different, you may need to change the corresponding paths in config files.
MMSelfSup 支持多个数据集。请遵循相应的数据准备指南。建议将您的数据集根目录软链接到 `$MMSELFSUP/data`。如果您的文件夹结构不同,您可能需要更改配置文件中的相应路径。
- [Prepare ImageNet](#prepare-imagenet)
- [Prepare Place205](#prepare-place205)
- [Prepare iNaturalist2018](#prepare-inaturalist2018)
- [Prepare PASCAL VOC](#prepare-pascal-voc)
- [Prepare CIFAR10](#prepare-cifar10)
- [Prepare datasets for detection and segmentation](#prepare-datasets-for-detection-and-segmentation)
- [Detection](#detection)
- [Segmentation](#segmentation)
- [准备 ImageNet 数据集](#准备-imagenet-数据集)
- [准备 Places205 数据集](#准备-places205-数据集)
- [准备 iNaturalist2018 数据集](#准备-inaturalist2018-数据集)
- [准备 PASCAL VOC 数据集](#准备-pascal-voc-数据集)
- [准备 CIFAR10 数据集](#准备-cifar10-数据集)
- [准备检测和分割数据集](#准备检测和分割数据集)
- [检测](#检测)
- [分割](#分割)
```
mmselfsup
@ -37,51 +37,51 @@ mmselfsup
```
## Prepare ImageNet
## 准备 ImageNet 数据集
For ImageNet, it has multiple versions, but the most commonly used one is [ILSVRC 2012](http://www.image-net.org/challenges/LSVRC/2012/). It can be accessed with the following steps:
对于 ImageNet它有多个版本但最常用的是 [ILSVRC 2012](http://www.image-net.org/challenges/LSVRC/2012/)。可以通过以下步骤得到:
1. Register an account and login to the [download page](http://www.image-net.org/download-images)
2. Find download links for ILSVRC2012 and download the following two files
1. 注册账号并登录 [下载页面](http://www.image-net.org/download-images)
2. 找到 ILSVRC2012 的下载链接,下载以下两个文件
- ILSVRC2012_img_train.tar (~138GB)
- ILSVRC2012_img_val.tar (~6.3GB)
3. Untar the downloaded files
4. Download meta data using this [script](https://github.com/BVLC/caffe/blob/master/data/ilsvrc12/get_ilsvrc_aux.sh)
3. 解压下载的文件
4. 使用这个 [脚本](https://github.com/BVLC/caffe/blob/master/data/ilsvrc12/get_ilsvrc_aux.sh) 下载元数据
## Prepare Place205
## 准备 Places205 数据集
For Places205, you need to:
对于 Places205您需要
1. Register an account and login to the [download page](http://places.csail.mit.edu/downloadData.html)
2. Download the resized images and the image list of train set and validation set of Places205
3. Untar the downloaded files
1. 注册账号并登录 [下载页面](http://places.csail.mit.edu/downloadData.html)
2. 下载 Places205 经过缩放的图片以及训练集和验证集的图片列表
3. 解压下载的文件
## Prepare iNaturalist2018
## 准备 iNaturalist2018 数据集
For iNaturalist2018, you need to:
对于 iNaturalist2018您需要
1. Download the training and validation images and annotations from the [download page](https://github.com/visipedia/inat_comp/tree/master/2018)
2. Untar the downloaded files
3. Convert the original json annotation format to the list format using the script `tools/data_converters/convert_inaturalist.py`
1. 从 [下载页面](https://github.com/visipedia/inat_comp/tree/master/2018) 下载训练集和验证集图像及标注
2. 解压下载的文件
3. 使用脚本 `tools/data_converters/convert_inaturalist.py` 将原来的 json 标注格式转换为列表格式
## Prepare PASCAL VOC
## 准备 PASCAL VOC 数据集
Assuming that you usually store datasets in `$YOUR_DATA_ROOT`. The following command will automatically download PASCAL VOC 2007 into `$YOUR_DATA_ROOT`, prepare the required files, create a folder `data` under `$MMSELFSUP` and make a symlink `VOCdevkit`.
假设您通常将数据集存储在 `$YOUR_DATA_ROOT` 中。下面的命令会自动将 PASCAL VOC 2007 下载到 `$YOUR_DATA_ROOT` 中,准备好所需的文件,在 `$MMSELFSUP` 下创建一个文件夹 `data`,并制作一个软链接 `VOCdevkit`
```shell
bash tools/data_converters/prepare_voc07_cls.sh $YOUR_DATA_ROOT
```
## Prepare CIFAR10
## 准备 CIFAR10 数据集
CIFAR10 will be downloaded automatically if it is not found. In addition, `dataset` implemented by `MMSelfSup` will also automatically structure CIFAR10 to the appropriate format.
如果没有找到 CIFAR10 系统将会自动下载。此外,由 `MMSelfSup` 实现的 `dataset` 也会自动将 CIFAR10 转换为适当的格式。
## Prepare datasets for detection and segmentation
## 准备检测和分割数据集
### Detection
### 检测
To prepare COCO, VOC2007 and VOC2012 for detection, you can refer to [mmdet](https://github.com/open-mmlab/mmdetection/blob/master/docs/1_exist_data_model.md).
您可以参考 [mmdet](https://github.com/open-mmlab/mmdetection/blob/master/docs/1_exist_data_model.md) 来准备 COCOVOC2007 和 VOC2012 检测数据集。
### Segmentation
### 分割
To prepare VOC2012AUG and Cityscapes for segmentation, you can refer to [mmseg](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#prepare-datasets)
您可以参考 [mmseg](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#prepare-datasets) 来准备 VOC2012AUG 和 Cityscapes 分割数据集。