mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
[Refactor] refactor knn (#420)
This commit is contained in:
parent
8f1c35957b
commit
b23765fce7
@ -1,29 +1,38 @@
|
||||
data_source = 'ImageNet'
|
||||
dataset_type = 'SingleViewDataset'
|
||||
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
pipeline = [
|
||||
dict(type='Resize', size=256),
|
||||
dict(type='CenterCrop', size=224),
|
||||
dict(type='ToTensor'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
custom_imports = dict(imports='mmcls.datasets', allow_failed_imports=False)
|
||||
dataset_type = 'mmcls.ImageNet'
|
||||
data_root = 'data/imagenet'
|
||||
file_client_args = dict(backend='disk')
|
||||
|
||||
extract_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(type='mmcls.ResizeEdge', scale=256, edge='short'),
|
||||
dict(type='CenterCrop', crop_size=224),
|
||||
dict(type='PackSelfSupInputs'),
|
||||
]
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=256,
|
||||
workers_per_gpu=8,
|
||||
train=dict(
|
||||
train_dataloader = dict(
|
||||
batch_size=256,
|
||||
num_workers=8,
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_source=dict(
|
||||
type=data_source,
|
||||
data_prefix='data/imagenet/train',
|
||||
ann_file='data/imagenet/meta/train.txt',
|
||||
),
|
||||
pipeline=pipeline),
|
||||
val=dict(
|
||||
data_root=data_root,
|
||||
ann_file='meta/train.txt',
|
||||
data_prefix='train',
|
||||
pipeline=extract_pipeline),
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
)
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=256,
|
||||
num_workers=8,
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_source=dict(
|
||||
type=data_source,
|
||||
data_prefix='data/imagenet/val',
|
||||
ann_file='data/imagenet/meta/val.txt',
|
||||
),
|
||||
pipeline=pipeline))
|
||||
data_root=data_root,
|
||||
ann_file='meta/val.txt',
|
||||
data_prefix='val',
|
||||
pipeline=extract_pipeline),
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
)
|
||||
|
||||
# pooling cfg
|
||||
pool_cfg = dict(type='AvgPool2d')
|
||||
|
@ -7,10 +7,7 @@ CFG=$1
|
||||
EPOCH=$2
|
||||
PY_ARGS=${@:3}
|
||||
GPUS=${GPUS:-8}
|
||||
NNODES=${NNODES:-1}
|
||||
NODE_RANK=${NODE_RANK:-0}
|
||||
PORT=${PORT:-29500}
|
||||
MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
|
||||
|
||||
WORK_DIR=$(echo ${CFG%.*} | sed -e "s/configs/work_dirs/g")/
|
||||
|
||||
@ -20,9 +17,6 @@ if [ ! -f $WORK_DIR/epoch_${EPOCH}.pth ]; then
|
||||
fi
|
||||
|
||||
python -m torch.distributed.launch \
|
||||
--nnodes=$NNODES \
|
||||
--node_rank=$NODE_RANK \
|
||||
--master_addr=$MASTER_ADDR \
|
||||
--nproc_per_node=$GPUS \
|
||||
--master_port=$PORT \
|
||||
tools/benchmarks/classification/knn_imagenet/test_knn.py $CFG \
|
||||
|
@ -7,18 +7,12 @@ CFG=$1
|
||||
PRETRAIN=$2 # pretrained model
|
||||
PY_ARGS=${@:3}
|
||||
GPUS=${GPUS:-8}
|
||||
NNODES=${NNODES:-1}
|
||||
NODE_RANK=${NODE_RANK:-0}
|
||||
PORT=${PORT:-29500}
|
||||
MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
|
||||
|
||||
# set work_dir according to config path and pretrained model to distinguish different models
|
||||
WORK_DIR="$(echo ${CFG%.*} | sed -e "s/configs/work_dirs/g")/$(echo $PRETRAIN | rev | cut -d/ -f 1 | rev)"
|
||||
|
||||
python -m torch.distributed.launch \
|
||||
--nnodes=$NNODES \
|
||||
--node_rank=$NODE_RANK \
|
||||
--master_addr=$MASTER_ADDR \
|
||||
--nproc_per_node=$GPUS \
|
||||
--master_port=$PORT \
|
||||
tools/benchmarks/classification/knn_imagenet/test_knn.py $CFG \
|
||||
|
@ -11,7 +11,6 @@ PY_ARGS=${@:5}
|
||||
GPUS=${GPUS:-8}
|
||||
GPUS_PER_NODE=${GPUS_PER_NODE:-8}
|
||||
CPUS_PER_TASK=${CPUS_PER_TASK:-5}
|
||||
PORT=${PORT:-29500}
|
||||
SRUN_ARGS=${SRUN_ARGS:-""}
|
||||
|
||||
WORK_DIR=$(echo ${CFG%.*} | sed -e "s/configs/work_dirs/g")/
|
||||
@ -32,5 +31,4 @@ srun -p ${PARTITION} \
|
||||
${SRUN_ARGS} \
|
||||
python -u tools/benchmarks/classification/knn_imagenet/test_knn.py $CFG \
|
||||
--checkpoint $WORK_DIR/epoch_${EPOCH}.pth \
|
||||
--cfg-options dist_params.port=$PORT \
|
||||
--work-dir $WORK_DIR --launcher="slurm" ${PY_ARGS}
|
||||
|
@ -11,7 +11,6 @@ PY_ARGS=${@:5}
|
||||
GPUS=${GPUS:-8}
|
||||
GPUS_PER_NODE=${GPUS_PER_NODE:-8}
|
||||
CPUS_PER_TASK=${CPUS_PER_TASK:-5}
|
||||
PORT=${PORT:-29500}
|
||||
SRUN_ARGS=${SRUN_ARGS:-""}
|
||||
|
||||
# set work_dir according to config path and pretrained model to distinguish different models
|
||||
@ -29,5 +28,4 @@ srun -p ${PARTITION} \
|
||||
python -u tools/benchmarks/classification/knn_imagenet/test_knn.py $CFG \
|
||||
--cfg-options model.backbone.init_cfg.type=Pretrained \
|
||||
model.backbone.init_cfg.checkpoint=$PRETRAIN \
|
||||
dist_params.port=$PORT \
|
||||
--work-dir $WORK_DIR --launcher="slurm" ${PY_ARGS}
|
||||
|
@ -1,19 +1,23 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import copy
|
||||
import os
|
||||
import os.path as osp
|
||||
import time
|
||||
|
||||
import mmcv
|
||||
import torch
|
||||
from mmcv import DictAction
|
||||
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
||||
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
|
||||
from mmengine import Runner
|
||||
from mmengine.config import Config, DictAction
|
||||
from mmengine.dist import get_rank, init_dist
|
||||
from mmengine.logging import MMLogger
|
||||
from mmengine.model.wrappers import MMDistributedDataParallel, is_model_wrapper
|
||||
from mmengine.runner import load_checkpoint
|
||||
from mmengine.utils import mkdir_or_exist
|
||||
|
||||
from mmselfsup.datasets import build_dataloader, build_dataset
|
||||
from mmselfsup.models import build_algorithm
|
||||
from mmselfsup.models.utils import ExtractProcess, knn_classifier
|
||||
from mmselfsup.utils import get_root_logger
|
||||
from mmselfsup.evaluation.functional import knn_classifier
|
||||
from mmselfsup.models.utils import Extractor
|
||||
from mmselfsup.registry import MODELS
|
||||
from mmselfsup.utils import register_all_modules
|
||||
|
||||
|
||||
def parse_args():
|
||||
@ -59,6 +63,7 @@ def parse_args():
|
||||
type=bool,
|
||||
help='Store the features on GPU. Set to False if you encounter OOM')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
parser.add_argument('--seed', type=int, default=0, help='random seed')
|
||||
args = parser.parse_args()
|
||||
if 'LOCAL_RANK' not in os.environ:
|
||||
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
||||
@ -68,12 +73,18 @@ def parse_args():
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
cfg = mmcv.Config.fromfile(args.config)
|
||||
# register all modules in mmselfsup into the registries
|
||||
register_all_modules()
|
||||
|
||||
# load config
|
||||
cfg = Config.fromfile(args.config)
|
||||
if args.cfg_options is not None:
|
||||
cfg.merge_from_dict(args.cfg_options)
|
||||
|
||||
# set cudnn_benchmark
|
||||
if cfg.get('cudnn_benchmark', False):
|
||||
if cfg.env_cfg.get('cudnn_benchmark', False):
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
# work_dir is determined in this priority: CLI > segment in file > filename
|
||||
if args.work_dir is not None:
|
||||
# update configs according to CLI args if args.work_dir is not None
|
||||
@ -89,47 +100,30 @@ def main():
|
||||
distributed = False
|
||||
else:
|
||||
distributed = True
|
||||
init_dist(args.launcher, **cfg.dist_params)
|
||||
init_dist(args.launcher)
|
||||
|
||||
# create work_dir and init the logger before other steps
|
||||
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
||||
# create work_dir
|
||||
knn_work_dir = osp.join(cfg.work_dir, 'knn/')
|
||||
mmcv.mkdir_or_exist(osp.abspath(knn_work_dir))
|
||||
log_file = osp.join(knn_work_dir, f'knn_{timestamp}.log')
|
||||
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
|
||||
mkdir_or_exist(osp.abspath(knn_work_dir))
|
||||
|
||||
# build the dataloader
|
||||
dataset_cfg = mmcv.Config.fromfile(args.dataset_config)
|
||||
dataset_train = build_dataset(dataset_cfg.data.train)
|
||||
dataset_val = build_dataset(dataset_cfg.data.val)
|
||||
if 'imgs_per_gpu' in cfg.data:
|
||||
logger.warning('"imgs_per_gpu" is deprecated. '
|
||||
'Please use "samples_per_gpu" instead')
|
||||
if 'samples_per_gpu' in cfg.data:
|
||||
logger.warning(
|
||||
f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and '
|
||||
f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"'
|
||||
f'={cfg.data.imgs_per_gpu} is used in this experiments')
|
||||
else:
|
||||
logger.warning(
|
||||
'Automatically set "samples_per_gpu"="imgs_per_gpu"='
|
||||
f'{cfg.data.imgs_per_gpu} in this experiments')
|
||||
cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu
|
||||
data_loader_train = build_dataloader(
|
||||
dataset_train,
|
||||
samples_per_gpu=dataset_cfg.data.samples_per_gpu,
|
||||
workers_per_gpu=dataset_cfg.data.workers_per_gpu,
|
||||
dist=distributed,
|
||||
shuffle=False)
|
||||
data_loader_val = build_dataloader(
|
||||
dataset_val,
|
||||
samples_per_gpu=dataset_cfg.data.samples_per_gpu,
|
||||
workers_per_gpu=dataset_cfg.data.workers_per_gpu,
|
||||
dist=distributed,
|
||||
shuffle=False)
|
||||
# init the logger before other steps
|
||||
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
||||
log_file = osp.join(knn_work_dir, f'knn_{timestamp}.log')
|
||||
logger = MMLogger.get_instance(
|
||||
'mmselfsup',
|
||||
logger_name='mmselfsup',
|
||||
log_file=log_file,
|
||||
log_level=cfg.log_level)
|
||||
|
||||
# build dataloader
|
||||
dataset_cfg = Config.fromfile(args.dataset_config)
|
||||
data_loader_train = Runner.build_dataloader(
|
||||
dataloader=dataset_cfg.train_dataloader, seed=args.seed)
|
||||
data_loader_val = Runner.build_dataloader(
|
||||
dataloader=dataset_cfg.val_dataloader, seed=args.seed)
|
||||
|
||||
# build the model
|
||||
model = build_algorithm(cfg.model)
|
||||
model = MODELS.build(cfg.model)
|
||||
model.init_weights()
|
||||
|
||||
# model is determined in this priority: init_cfg > checkpoint > random
|
||||
@ -145,30 +139,41 @@ def main():
|
||||
else:
|
||||
logger.info('No pretrained or checkpoint is given, use random init.')
|
||||
|
||||
if not distributed:
|
||||
model = MMDataParallel(model, device_ids=[0])
|
||||
else:
|
||||
if torch.cuda.is_available():
|
||||
model = model.cuda()
|
||||
|
||||
if distributed:
|
||||
model = MMDistributedDataParallel(
|
||||
model.cuda(),
|
||||
module=model.cuda(),
|
||||
device_ids=[torch.cuda.current_device()],
|
||||
broadcast_buffers=False)
|
||||
|
||||
model.eval()
|
||||
# build extraction processor and run
|
||||
extractor = ExtractProcess()
|
||||
train_feats = extractor.extract(
|
||||
model, data_loader_train, distributed=distributed)['feat']
|
||||
val_feats = extractor.extract(
|
||||
model, data_loader_val, distributed=distributed)['feat']
|
||||
if is_model_wrapper(model):
|
||||
model = model.module
|
||||
|
||||
# build extractor and extract features
|
||||
extractor_train = Extractor(
|
||||
extract_dataloader=data_loader_train,
|
||||
seed=args.seed,
|
||||
dist_mode=distributed,
|
||||
pool_cfg=copy.deepcopy(dataset_cfg.pool_cfg))
|
||||
extractor_val = Extractor(
|
||||
extract_dataloader=data_loader_val,
|
||||
seed=args.seed,
|
||||
dist_mode=distributed,
|
||||
pool_cfg=copy.deepcopy(dataset_cfg.pool_cfg))
|
||||
train_feats = extractor_train(model)['feat5']
|
||||
val_feats = extractor_val(model)['feat5']
|
||||
|
||||
train_feats = torch.from_numpy(train_feats)
|
||||
val_feats = torch.from_numpy(val_feats)
|
||||
train_labels = torch.LongTensor(dataset_train.data_source.get_gt_labels())
|
||||
val_labels = torch.LongTensor(dataset_val.data_source.get_gt_labels())
|
||||
train_labels = torch.LongTensor(data_loader_train.dataset.get_gt_labels())
|
||||
val_labels = torch.LongTensor(data_loader_val.dataset.get_gt_labels())
|
||||
|
||||
logger.info('Features are extracted! Start k-NN classification...')
|
||||
|
||||
rank, _ = get_dist_info()
|
||||
# run knn
|
||||
rank = get_rank()
|
||||
if rank == 0:
|
||||
if args.use_cuda:
|
||||
train_feats = train_feats.cuda()
|
||||
|
Loading…
x
Reference in New Issue
Block a user