base.py for semi 1percent
parent
8d7094002f
commit
beeb228b63
|
@ -0,0 +1,72 @@
|
|||
_base_ = '../../../base.py'
|
||||
# model settings
|
||||
model = dict(
|
||||
type='Classification',
|
||||
pretrained=None,
|
||||
backbone=dict(
|
||||
type='ResNet',
|
||||
depth=50,
|
||||
out_indices=[4], # 0: conv-1, x: stage-x
|
||||
norm_cfg=dict(type='SyncBN')),
|
||||
head=dict(
|
||||
type='ClsHead', with_avg_pool=True, in_channels=2048,
|
||||
num_classes=1000))
|
||||
# dataset settings
|
||||
data_source_cfg = dict(
|
||||
type='ImageNet',
|
||||
memcached=True,
|
||||
mclient_path='/mnt/lustre/share/memcached_client')
|
||||
data_train_list = 'data/imagenet/meta/train_labeled_1percent.txt'
|
||||
data_train_root = 'data/imagenet/train'
|
||||
data_test_list = 'data/imagenet/meta/val_labeled.txt'
|
||||
data_test_root = 'data/imagenet/val'
|
||||
dataset_type = 'ClassificationDataset'
|
||||
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
train_pipeline = [
|
||||
dict(type='RandomResizedCrop', size=224),
|
||||
dict(type='RandomHorizontalFlip'),
|
||||
dict(type='ToTensor'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='Resize', size=256),
|
||||
dict(type='CenterCrop', size=224),
|
||||
dict(type='ToTensor'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
]
|
||||
data = dict(
|
||||
imgs_per_gpu=64, # total 256
|
||||
workers_per_gpu=2,
|
||||
train=dict(
|
||||
type=dataset_type,
|
||||
data_source=dict(
|
||||
list_file=data_train_list, root=data_train_root,
|
||||
**data_source_cfg),
|
||||
pipeline=train_pipeline),
|
||||
val=dict(
|
||||
type=dataset_type,
|
||||
data_source=dict(
|
||||
list_file=data_test_list, root=data_test_root, **data_source_cfg),
|
||||
pipeline=test_pipeline))
|
||||
# additional hooks
|
||||
custom_hooks = [
|
||||
dict(
|
||||
type='ValidateHook',
|
||||
dataset=data['val'],
|
||||
initial=False,
|
||||
interval=20,
|
||||
imgs_per_gpu=32,
|
||||
workers_per_gpu=2,
|
||||
eval_param=dict(topk=(1, 5)))
|
||||
]
|
||||
# learning policy
|
||||
lr_config = dict(policy='step', step=[12, 16], gamma=0.2)
|
||||
checkpoint_config = dict(interval=20)
|
||||
log_config = dict(
|
||||
interval=10,
|
||||
hooks=[
|
||||
dict(type='TextLoggerHook'),
|
||||
dict(type='TensorboardLoggerHook')
|
||||
])
|
||||
# runtime settings
|
||||
total_epochs = 20
|
Loading…
Reference in New Issue