Merge pull request #46 from guochengqian/patch-1

Create r50_withoutsobel.py for deepclustering experiment
This commit is contained in:
Xiaohang Zhan 2020-10-14 22:46:44 +08:00 committed by GitHub
commit d191601da6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -0,0 +1,88 @@
_base_ = '../../base.py'
# model settings
num_classes = 10000
model = dict(
type='DeepCluster',
pretrained=None,
with_sobel=False,
backbone=dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN')),
neck=dict(type='AvgPoolNeck'),
head=dict(
type='ClsHead',
with_avg_pool=False, # already has avgpool in the neck
in_channels=2048,
num_classes=num_classes))
# dataset settings
data_source_cfg = dict(
type='ImageNet',
memcached=True,
mclient_path='/mnt/lustre/share/memcached_client')
data_train_list = 'data/imagenet/meta/train.txt'
data_train_root = 'data/imagenet/jpeg/train'
dataset_type = 'DeepClusterDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(type='RandomRotation', degrees=2),
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=1.0,
hue=0.5),
dict(type='RandomGrayscale', p=0.2),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
]
extract_pipeline = [
dict(type='Resize', size=256),
dict(type='CenterCrop', size=224),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
]
data = dict(
imgs_per_gpu=64, # 32
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list, root=data_train_root,
**data_source_cfg),
pipeline=train_pipeline))
# additional hooks
custom_hooks = [
dict(
type='DeepClusterHook',
extractor=dict(
imgs_per_gpu=128,
workers_per_gpu=8,
dataset=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list,
root=data_train_root,
**data_source_cfg),
pipeline=extract_pipeline)),
clustering=dict(type='Kmeans', k=num_classes, pca_dim=256),
unif_sampling=True,
reweight=False,
reweight_pow=0.5,
initial=True, # call initially
interval=1)
]
# optimizer
optimizer = dict(
type='SGD', lr=0.3, momentum=0.9, weight_decay=0.00001,
nesterov=False,
paramwise_options={'\Ahead.': dict(momentum=0.)})
# learning policy
lr_config = dict(policy='step', step=[400])
checkpoint_config = dict(interval=10)
# runtime settings
total_epochs = 200