Compare commits

...

2 Commits
v1.0.0 ... main

Author SHA1 Message Date
Yixiao Fang
db861f3048
Update issue template and ut (#750)
* update issue template and ut

* update ut requirements

* update docs

* update
2023-06-25 10:30:27 +08:00
Yixiao Fang
c77954bb90
[Fix] Fix import error (#746)
* fix import error

* update
2023-04-10 14:56:52 +08:00
7 changed files with 12 additions and 27 deletions

View File

@ -19,8 +19,8 @@ body:
label: Branch
description: Which branch/version are you using?
options:
- master branch (0.x version, such as `v0.10.0`, or `dev` branch)
- 1.x branch (1.x version, such as `v1.0.0rc2`, or `dev-1.x` branch)
- main branch (1.x version)
- 0.x branch
validations:
required: true

View File

@ -62,7 +62,7 @@ We recommend users to follow our best practices to install MMSelfSup. However, t
```shell
pip install -U openmim
mim install mmengine
mim install 'mmcv>=2.0.0rc1'
mim install 'mmcv>=2.0.0'
```
**Step 1.** Install MMSelfSup.
@ -79,25 +79,18 @@ In this case, install mmselfsup from source:
```shell
git clone https://github.com/open-mmlab/mmselfsup.git
cd mmselfsup
git checkout 1.x
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.
```
Optionally, if you want to [contribute](https://github.com/open-mmlab/mmselfsup/blob/main/docs/en/notes/contribution_guide.md) to MMSelfSup or experience experimental functions, please checkout to the `dev-1.x` branch:
```shell
git checkout dev-1.x
```
#### Install as a Python package
Just install with pip.
```shell
pip install 'mmselfsup>=1.0.0rc0'
pip install 'mmselfsup>=1.0.0'
```
### Verify the installation

View File

@ -62,7 +62,7 @@ conda install pytorch torchvision cpuonly -c pytorch
```shell
pip install -U openmim
mim install mmengine
mim install 'mmcv>=2.0.0rc1'
mim install 'mmcv>=2.0.0'
```
**步骤 1.** 安装 MMSelfSup。
@ -79,25 +79,18 @@ mim install 'mmcv>=2.0.0rc1'
```shell
git clone https://github.com/open-mmlab/mmselfsup.git
cd mmselfsup
git checkout 1.x
pip install -v -e .
# "-v" 表示详细,或更多输出
# "-e" 表示以可编辑模式安装项目,
# 因此,对代码所做的任何本地修改都将生效,无需重新安装。
```
或者,如果您想为 MMSelfSup 做出[贡献](https://github.com/open-mmlab/mmselfsup/blob/main/docs/zh_cn/notes/contribution_guides.md)或体验其正在实验中的功能,请查看 `dev-1.x` 分支:
```shell
git checkout dev-1.x
```
#### 作为 Python 包安装
直接用 pip 安装:
```shell
pip install 'mmselfsup>=1.0.0rc0'
pip install 'mmselfsup>=1.0.0'
```
### 验证安装

View File

@ -55,15 +55,14 @@ __all__ = [
# Registries For Runner and the related
# manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner`
RUNNERS = Registry(
'runner', parent=MMENGINE_RUNNERS, locations=['mmselfsup.engine.runner'])
'runner', parent=MMENGINE_RUNNERS, locations=['mmselfsup.engine'])
# manage runner constructors that define how to initialize runners
RUNNER_CONSTRUCTORS = Registry(
'runner constructor',
parent=MMENGINE_RUNNER_CONSTRUCTORS,
locations=['mmselfsup.engine.runner'])
locations=['mmselfsup.engine'])
# manage all kinds of loops like `EpochBasedTrainLoop`
LOOPS = Registry(
'loop', parent=MMENGINE_LOOPS, locations=['mmselfsup.engine.runner'])
LOOPS = Registry('loop', parent=MMENGINE_LOOPS, locations=['mmselfsup.engine'])
# manage all kinds of hooks like `CheckpointHook`
HOOKS = Registry(
'hook', parent=MMENGINE_HOOKS, locations=['mmselfsup.engine.hooks'])

View File

@ -1,5 +1,5 @@
asynctest
codecov
coverage
flake8
interrogate
isort==5.10.1

View File

@ -9,7 +9,7 @@ from mmselfsup.models import BEiT
from mmselfsup.structures import SelfSupDataSample
data_preprocessor = dict(
type='TwoNormDataPreprocessor',
type='mmselfsup.TwoNormDataPreprocessor',
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
second_mean=(-20.4, -20.4, -20.4),

View File

@ -9,7 +9,7 @@ from mmselfsup.models import BEiT
from mmselfsup.structures import SelfSupDataSample
data_preprocessor = dict(
type='TwoNormDataPreprocessor',
type='mmselfsup.TwoNormDataPreprocessor',
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
second_mean=(127.5, 127.5, 127.5),