import numpy as np import torch import torch.nn as nn from openselfsup.utils import print_log from . import builder from .registry import MODELS from .utils import Sobel @MODELS.register_module class DeepCluster(nn.Module): def __init__(self, backbone, with_sobel=False, neck=None, head=None, pretrained=None): super(DeepCluster, self).__init__() self.with_sobel = with_sobel if with_sobel: self.sobel_layer = Sobel() self.backbone = builder.build_backbone(backbone) self.neck = builder.build_neck(neck) if head is not None: self.head = builder.build_head(head) self.init_weights(pretrained=pretrained) # reweight self.num_classes = head.num_classes self.loss_weight = torch.ones((self.num_classes, ), dtype=torch.float32).cuda() self.loss_weight /= self.loss_weight.sum() def init_weights(self, pretrained=None): if pretrained is not None: print_log('load model from: {}'.format(pretrained), logger='root') self.backbone.init_weights(pretrained=pretrained) self.neck.init_weights(init_linear='kaiming') self.head.init_weights(init_linear='normal') def forward_backbone(self, img): """Forward backbone Returns: x (tuple): backbone outputs """ if self.with_sobel: img = self.sobel_layer(img) x = self.backbone(img) return x def forward_train(self, img, pseudo_label, **kwargs): x = self.forward_backbone(img) assert len(x) == 1 feature = self.neck(x) outs = self.head(feature) loss_inputs = (outs, pseudo_label) losses = self.head.loss(*loss_inputs) return losses def forward_test(self, img, **kwargs): x = self.forward_backbone(img) # tuple outs = self.head(x) keys = ['head{}'.format(i) for i in range(len(outs))] out_tensors = [out.cpu() for out in outs] # NxC return dict(zip(keys, out_tensors)) def forward(self, img, mode='train', **kwargs): if mode == 'train': return self.forward_train(img, **kwargs) elif mode == 'test': return self.forward_test(img, **kwargs) elif mode == 'extract': return self.forward_backbone(img) else: raise Exception("No such mode: {}".format(mode)) def set_reweight(self, labels, reweight_pow=0.5): hist = np.bincount( labels, minlength=self.num_classes).astype(np.float32) inv_hist = (1. / (hist + 1e-10))**reweight_pow weight = inv_hist / inv_hist.sum() self.loss_weight.copy_(torch.from_numpy(weight)) self.head.criterion = nn.CrossEntropyLoss(weight=self.loss_weight)