# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import numpy as np import pytest from mmselfsup.datasets import SingleViewDataset # dataset settings data_source = 'ImageNet' dataset_type = 'MultiViewDataset' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [dict(type='RandomResizedCrop', size=4)] # prefetch prefetch = False if not prefetch: train_pipeline.extend( [dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) def test_one_view_dataset(): data = dict( data_source=dict( type=data_source, data_prefix=osp.join(osp.dirname(__file__), '../../data'), ann_file=osp.join( osp.dirname(__file__), '../../data/data_list.txt'), ), pipeline=train_pipeline, prefetch=prefetch) dataset = SingleViewDataset(**data) fake_results = {'test': np.array([[0.7, 0, 0.3], [0.5, 0.3, 0.2]])} with pytest.raises(AssertionError): eval_res = dataset.evaluate({'test': np.array([[0.7, 0, 0.3]])}, topk=(1)) eval_res = dataset.evaluate(fake_results, topk=(1, 2)) assert eval_res['test_top1'] == 1 * 100.0 / 2 assert eval_res['test_top2'] == 2 * 100.0 / 2