# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.core import SelfSupDataSample from mmselfsup.models.algorithms import SimSiam backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN'), zero_init_residual=True) neck = dict( type='NonLinearNeck', in_channels=512, hid_channels=2, out_channels=2, num_layers=3, with_last_bn_affine=False, with_avg_pool=True, norm_cfg=dict(type='BN1d')) head = dict( type='LatentPredictHead', predictor=dict( type='NonLinearNeck', in_channels=2, hid_channels=2, out_channels=2, with_avg_pool=False, with_last_bn=False, with_last_bias=True, norm_cfg=dict(type='BN1d'))) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_simsiam(): preprocess_cfg = { 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'to_rgb': True } with pytest.raises(AssertionError): alg = SimSiam( backbone=backbone, neck=neck, head=None, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = SimSiam( backbone=backbone, neck=None, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = SimSiam( backbone=None, neck=neck, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) alg = SimSiam( backbone=backbone, neck=neck, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) fake_data = [{ 'inputs': [torch.randn((3, 224, 224)), torch.randn((3, 224, 224))], 'data_sample': SelfSupDataSample() } for _ in range(2)] fake_out = alg(fake_data, return_loss=True) assert fake_out['loss'].item() > -1 # test extract fake_inputs, fake_data_samples = alg.preprocss_data(fake_data) fake_feat = alg.extract_feat( inputs=fake_inputs, data_samples=fake_data_samples) assert fake_feat[0].size() == torch.Size([2, 512, 7, 7])