# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmselfsup.models.algorithms import SimSiam backbone = dict( type='ResNet', depth=50, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN'), zero_init_residual=True) neck = dict( type='NonLinearNeck', in_channels=2048, hid_channels=4, out_channels=4, num_layers=3, with_last_bn_affine=False, with_avg_pool=True, norm_cfg=dict(type='BN1d')) head = dict( type='LatentPredictHead', predictor=dict( type='NonLinearNeck', in_channels=4, hid_channels=4, out_channels=4, with_avg_pool=False, with_last_bn=False, with_last_bias=True, norm_cfg=dict(type='BN1d'))) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_simsiam(): with pytest.raises(AssertionError): alg = SimSiam(backbone=backbone, neck=neck, head=None) alg = SimSiam(backbone=backbone, neck=neck, head=head) with pytest.raises(AssertionError): fake_input = torch.randn((16, 3, 224, 224)) alg.forward_train(fake_input) fake_input = [ torch.randn((16, 3, 224, 224)), torch.randn((16, 3, 224, 224)) ] fake_out = alg.forward(fake_input) assert fake_out['loss'].item() > -1