import numpy as np import torch import torch.nn as nn from openselfsup.utils import print_log from . import builder from .registry import MODELS from .utils import Sobel @MODELS.register_module class DeepCluster(nn.Module): """DeepCluster. Implementation of "Deep Clustering for Unsupervised Learning of Visual Features (https://arxiv.org/abs/1807.05520)". Args: backbone (nn.Module): Module of backbone ConvNet. with_sobel (bool): Whether to apply a Sobel filter on images. Default: False. neck (nn.Module): Module of deep features to compact feature vectors. head (nn.Module): Module of loss functions. pretrained (str, optional): Path to pre-trained weights. Default: None. """ def __init__(self, backbone, with_sobel=False, neck=None, head=None, pretrained=None): super(DeepCluster, self).__init__() self.with_sobel = with_sobel if with_sobel: self.sobel_layer = Sobel() self.backbone = builder.build_backbone(backbone) self.neck = builder.build_neck(neck) if head is not None: self.head = builder.build_head(head) self.init_weights(pretrained=pretrained) # reweight self.num_classes = head.num_classes self.loss_weight = torch.ones((self.num_classes, ), dtype=torch.float32).cuda() self.loss_weight /= self.loss_weight.sum() def init_weights(self, pretrained=None): """Initialize the weights of model. Args: pretrained (str, optional): Path to pre-trained weights. Default: None. """ if pretrained is not None: print_log('load model from: {}'.format(pretrained), logger='root') self.backbone.init_weights(pretrained=pretrained) self.neck.init_weights(init_linear='kaiming') self.head.init_weights(init_linear='normal') def forward_backbone(self, img): """Forward backbone. Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. Returns: tuple[Tensor]: backbone outputs. """ if self.with_sobel: img = self.sobel_layer(img) x = self.backbone(img) return x def forward_train(self, img, pseudo_label, **kwargs): """Forward computation during training. Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. pseudo_label (Tensor): Label assignments. kwargs: Any keyword arguments to be used to forward. Returns: dict[str, Tensor]: A dictionary of loss components. """ x = self.forward_backbone(img) assert len(x) == 1 feature = self.neck(x) outs = self.head(feature) loss_inputs = (outs, pseudo_label) losses = self.head.loss(*loss_inputs) return losses def forward_test(self, img, **kwargs): x = self.forward_backbone(img) # tuple outs = self.head(x) keys = ['head{}'.format(i) for i in range(len(outs))] out_tensors = [out.cpu() for out in outs] # NxC return dict(zip(keys, out_tensors)) def forward(self, img, mode='train', **kwargs): if mode == 'train': return self.forward_train(img, **kwargs) elif mode == 'test': return self.forward_test(img, **kwargs) elif mode == 'extract': return self.forward_backbone(img) else: raise Exception("No such mode: {}".format(mode)) def set_reweight(self, labels, reweight_pow=0.5): """Loss re-weighting. Re-weighting the loss according to the number of samples in each class. Args: labels (numpy.ndarray): Label assignments. reweight_pow (float): The power of re-weighting. Default: 0.5. """ hist = np.bincount( labels, minlength=self.num_classes).astype(np.float32) inv_hist = (1. / (hist + 1e-10))**reweight_pow weight = inv_hist / inv_hist.sum() self.loss_weight.copy_(torch.from_numpy(weight)) self.head.criterion = nn.CrossEntropyLoss(weight=self.loss_weight)