import numpy as np import torch.nn as nn from openselfsup.utils import print_log from . import builder from .registry import MODELS from .utils import Sobel @MODELS.register_module class Classification(nn.Module): """Simple image classification. Args: backbone (nn.Module): Module of backbone ConvNet. with_sobel (bool): Whether to apply a Sobel filter on images. Default: False. head (nn.Module): Module of loss functions. pretrained (str, optional): Path to pre-trained weights. Default: None. """ def __init__(self, backbone, with_sobel=False, head=None, pretrained=None): super(Classification, self).__init__() self.with_sobel = with_sobel if with_sobel: self.sobel_layer = Sobel() self.backbone = builder.build_backbone(backbone) if head is not None: self.head = builder.build_head(head) self.init_weights(pretrained=pretrained) def init_weights(self, pretrained=None): """Initialize the weights of model. Args: pretrained (str, optional): Path to pre-trained weights. Default: None. """ if pretrained is not None: print_log('load model from: {}'.format(pretrained), logger='root') self.backbone.init_weights(pretrained=pretrained) self.head.init_weights() def forward_backbone(self, img): """Forward backbone. Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. Returns: tuple[Tensor]: backbone outputs. """ if self.with_sobel: img = self.sobel_layer(img) x = self.backbone(img) return x def forward_train(self, img, gt_label, **kwargs): """Forward computation during training. Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. gt_label (Tensor): Ground-truth labels. kwargs: Any keyword arguments to be used to forward. Returns: dict[str, Tensor]: A dictionary of loss components. """ x = self.forward_backbone(img) outs = self.head(x) loss_inputs = (outs, gt_label) losses = self.head.loss(*loss_inputs) return losses def forward_test(self, img, **kwargs): x = self.forward_backbone(img) # tuple outs = self.head(x) keys = ['head{}'.format(i) for i in range(len(outs))] out_tensors = [out.cpu() for out in outs] # NxC return dict(zip(keys, out_tensors)) def aug_test(self, imgs): raise NotImplemented outs = np.mean([self.head(x) for x in self.forward_backbone(imgs)], axis=0) return outs def forward(self, img, mode='train', **kwargs): if mode == 'train': return self.forward_train(img, **kwargs) elif mode == 'test': return self.forward_test(img, **kwargs) elif mode == 'extract': return self.forward_backbone(img) else: raise Exception("No such mode: {}".format(mode))