# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.core import SelfSupDataSample from mmselfsup.models import MoCoV3 backbone = dict( type='VisionTransformer', arch='mocov3-small', # embed_dim = 384 img_size=224, patch_size=16, stop_grad_conv1=True) neck = dict( type='NonLinearNeck', in_channels=384, hid_channels=2, out_channels=2, num_layers=2, with_bias=False, with_last_bn=True, with_last_bn_affine=False, with_last_bias=False, with_avg_pool=False, vit_backbone=True, norm_cfg=dict(type='BN1d')) head = dict( type='MoCoV3Head', predictor=dict( type='NonLinearNeck', in_channels=2, hid_channels=2, out_channels=2, num_layers=2, with_bias=False, with_last_bn=True, with_last_bn_affine=False, with_last_bias=False, with_avg_pool=False, norm_cfg=dict(type='BN1d')), temperature=0.2) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_mocov3(): preprocess_cfg = { 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'to_rgb': True } with pytest.raises(AssertionError): alg = MoCoV3( backbone=None, neck=neck, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = MoCoV3( backbone=backbone, neck=None, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = MoCoV3( backbone=backbone, neck=neck, head=None, preprocess_cfg=copy.deepcopy(preprocess_cfg)) alg = MoCoV3( backbone=backbone, neck=neck, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) alg.init_weights() alg.momentum_update() fake_data = [{ 'inputs': [torch.randn((3, 224, 224)), torch.randn((3, 224, 224))], 'data_sample': SelfSupDataSample() } for _ in range(2)] # test extract fake_inputs, fake_data_samples = alg.preprocss_data(fake_data) fake_backbone_out = alg.extract_feat( inputs=fake_inputs, data_samples=fake_data_samples) assert fake_backbone_out[0][0].size() == torch.Size([2, 384, 14, 14]) assert fake_backbone_out[0][1].size() == torch.Size([2, 384])