# Copyright (c) OpenMMLab. All rights reserved. import tempfile from unittest import TestCase import torch import torch.nn as nn from mmengine.model import BaseModule from mmengine.optim import OptimWrapper from mmengine.runner import Runner from mmengine.structures import LabelData from torch.utils.data import Dataset from mmselfsup.engine import SwAVHook from mmselfsup.models.algorithms import BaseModel from mmselfsup.models.heads import SwAVHead from mmselfsup.registry import MODELS from mmselfsup.structures import SelfSupDataSample from mmselfsup.utils import get_model class DummyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) @property def metainfo(self): return self.METAINFO def __len__(self): return self.data.size(0) def __getitem__(self, index): data_sample = SelfSupDataSample() gt_label = LabelData(value=self.label[index]) setattr(data_sample, 'gt_label', gt_label) return dict(inputs=[self.data[index]], data_sample=data_sample) @MODELS.register_module() class SwAVDummyLayer(BaseModule): def __init__(self, init_cfg=None): super().__init__(init_cfg) self.linear = nn.Linear(2, 1) def forward(self, x): return self.linear(x) class ToyModel(BaseModel): def __init__(self): super().__init__(backbone=dict(type='SwAVDummyLayer')) self.prototypes_test = nn.Linear(1, 1) self.head = SwAVHead( loss=dict( type='SwAVLoss', feat_dim=2, num_crops=[2, 6], num_prototypes=3)) def loss(self, batch_inputs, data_samples): labels = [] for x in data_samples: labels.append(x.gt_label.value) labels = torch.stack(labels) outputs = self.backbone(batch_inputs[0]) loss = (labels - outputs).sum() outputs = dict(loss=loss) return outputs class TestSwAVHook(TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_swav_hook(self): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' dummy_dataset = DummyDataset() toy_model = ToyModel().to(device) swav_hook = SwAVHook( batch_size=1, epoch_queue_starts=15, crops_for_assign=[0, 1], feat_dim=128, queue_length=300, frozen_layers_cfg=dict(prototypes=2)) # test SwAVHook runner = Runner( model=toy_model, work_dir=self.temp_dir.name, train_dataloader=dict( dataset=dummy_dataset, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), batch_size=1, num_workers=0), optim_wrapper=OptimWrapper( torch.optim.Adam(toy_model.parameters())), param_scheduler=dict(type='MultiStepLR', milestones=[1]), train_cfg=dict(by_epoch=True, max_epochs=2), custom_hooks=[swav_hook], default_hooks=dict(logger=None), log_processor=dict(window_size=1), experiment_name='test_swav_hook', default_scope='mmselfsup') runner.train() for hook in runner.hooks: if isinstance(hook, SwAVHook): assert hook.queue_length == 300 assert get_model(runner.model).head.loss.use_queue is False