# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.core.data_structures.selfsup_data_sample import \ SelfSupDataSample from mmselfsup.models.algorithms.mae import MAE backbone = dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75) neck = dict( type='MAEPretrainDecoder', patch_size=16, in_chans=3, embed_dim=768, decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4., ) head = dict(type='MAEPretrainHead', norm_pix=False, patch_size=16) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_mae(): preprocess_cfg = { 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'to_rgb': True } with pytest.raises(AssertionError): alg = MAE( backbone=backbone, neck=None, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = MAE( backbone=backbone, neck=neck, head=None, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = MAE( backbone=None, neck=neck, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) alg = MAE( backbone=backbone, neck=neck, head=head, preprocess_cfg=copy.deepcopy(preprocess_cfg)) alg.init_weights() fake_data = [{ 'inputs': [torch.randn((3, 224, 224))], 'data_sample': SelfSupDataSample() } for _ in range(2)] fake_outputs = alg(fake_data, return_loss=True) assert isinstance(fake_outputs['loss'].item(), float) fake_inputs, fake_data_samples = alg.preprocss_data(fake_data) fake_feat = alg.extract_feat( inputs=fake_inputs, data_samples=fake_data_samples) assert list(fake_feat[0].shape) == [2, 50, 768]