Collections: - Name: CAE Metadata: Training Data: ImageNet-1k Training Techniques: - AdamW Training Resources: 16x A100-80G GPUs Architecture: - ViT Paper: URL: https://arxiv.org/abs/2202.03026 Title: "Context Autoencoder for Self-Supervised Representation Learning" README: configs/selfsup/cae/README.md Models: - Name: cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k In Collection: CAE Metadata: Epochs: 300 Batch Size: 2048 Results: null Config: configs/selfsup/cae/cae_vit-base-p16_16xb128-amp-coslr-300e_in1k.py Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k_20220825-404a1929.pth Downstream: - Type: Image Classification Metadata: Epochs: 100 Batch Size: 1024 Results: - Task: Fine-tuning Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 60.8 Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k.py Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.pth