# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmselfsup.models.algorithms import SimMIM @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_simmim(): # model config model_config = dict( backbone=dict( type='SimMIMSwinTransformer', arch='B', img_size=192, stage_cfgs=dict(block_cfgs=dict(window_size=6))), neck=dict( type='SimMIMNeck', in_channels=128 * 2**3, encoder_stride=32), head=dict(type='SimMIMHead', patch_size=4, encoder_in_channels=3)) model = SimMIM(**model_config) fake_inputs = torch.rand((2, 3, 192, 192)) fake_masks = torch.rand((2, 48, 48)) outputs = model.forward_train([fake_inputs, fake_masks]) assert isinstance(outputs['loss'], torch.Tensor)