# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.core import SelfSupDataSample from mmselfsup.models.algorithms import NPID backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict( type='LinearNeck', in_channels=512, out_channels=2, with_avg_pool=True) head = dict(type='ContrastiveHead', temperature=0.07) loss = dict(type='mmcls.CrossEntropyLoss'), memory_bank = dict(type='SimpleMemory', length=8, feat_dim=2, momentum=0.5) preprocess_cfg = { 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'to_rgb': True } @pytest.mark.skipif( not torch.cuda.is_available() or platform.system() == 'Windows', reason='CUDA is not available or Windows mem limit') def test_npid(): with pytest.raises(AssertionError): alg = NPID( backbone=backbone, neck=neck, head=head, memory_bank=None, loss=loss, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = NPID( backbone=backbone, neck=neck, head=None, loss=loss, memory_bank=memory_bank, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = NPID( backbone=backbone, neck=neck, head=head, loss=None, memory_bank=memory_bank, preprocess_cfg=copy.deepcopy(preprocess_cfg)) alg = NPID( backbone=backbone, neck=neck, head=head, loss=loss, memory_bank=memory_bank, preprocess_cfg=copy.deepcopy(preprocess_cfg)) fake_data = [{ 'inputs': torch.randn((3, 224, 224)), 'data_sample': SelfSupDataSample() } for _ in range(2)] fake_inputs, _ = alg.preprocss_data(fake_data) fake_backbone_out = alg.extract_feat(fake_inputs) assert fake_backbone_out[0].size() == torch.Size([2, 512, 7, 7])