#!/usr/bin/env bash set -e set -x CFG=$1 # use cfgs under "configs/benchmarks/classification/imagenet/*.py" PRETRAIN=$2 # pretrained model PY_ARGS=${@:3} GPUS=${GPUS:-8} # When changing GPUS, please also change imgs_per_gpu in the config file accordingly to ensure the total batch size is 256. PORT=${PORT:-29500} # set work_dir according to config path and pretrained model to distinguish different models WORK_DIR="$(echo ${CFG%.*} | sed -e "s/configs/work_dirs/g")/$(echo $PRETRAIN | rev | cut -d/ -f 1 | rev)" python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \ tools/train.py $CFG \ --cfg-options model.backbone.init_cfg.type=Pretrained \ model.backbone.init_cfg.checkpoint=$PRETRAIN \ --work_dir $WORK_DIR --seed 0 --launcher="pytorch" ${PY_ARGS}