# Tutorial 4: Pretrain with Custom Dataset - [Tutorial 4: Pretrain with Custom Dataset](#tutorial-4-pretrain-with-custom-dataset) - [Train MAE on Custom Dataset](#train-mae-on-custom-dataset) - [Step-1: Get the path of custom dataset](#step-1-get-the-path-of-custom-dataset) - [Step-2: Choose one config as template](#step-2-choose-one-config-as-template) - [Step-3: Edit the dataset related config](#step-3-edit-the-dataset-related-config) - [Train MAE on COCO Dataset](#train-mae-on-coco-dataset) - [Train SimCLR on Custom Dataset](#train-simclr-on-custom-dataset) - [Load Pre-trained Model to Speedup Convergence](#load-pre-trained-model-to-speedup-convergence) In this tutorial, we provide some tips on how to conduct self-supervised learning on your own dataset(without the need of label). ## Train MAE on Custom Dataset In MMSelfSup, We support the `CustomDataset` from MMClassification(similar to the `ImageFolder` in `torchvision`), which is able to read the images within the specified folder directly. You only need to prepare the path information of the custom dataset and edit the config. ### Step-1: Get the path of custom dataset It should be like `data/custom_dataset/` ### Step-2: Choose one config as template Here, we would like to use `configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py` as the example. We first copy this config file and rename it as `mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py`. - `custom_dataset`: indicate which dataset you used, e.g.,`in1k` for ImageNet dataset, `coco` for COCO dataset The content of this config is: ```python _base_ = [ '../_base_/models/mae_vit-base-p16.py', '../_base_/datasets/imagenet_mae.py', '../_base_/schedules/adamw_coslr-200e_in1k.py', '../_base_/default_runtime.py', ] # dataset 8 x 512 train_dataloader = dict(batch_size=512, num_workers=8) # optimizer wrapper optimizer = dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05) optim_wrapper = dict( type='OptimWrapper', optimizer=optimizer, paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=360, by_epoch=True, begin=40, end=400, convert_to_iter_based=True) ] # runtime settings # pre-train for 400 epochs train_cfg = dict(max_epochs=400) default_hooks = dict( logger=dict(type='LoggerHook', interval=100), # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) # randomness randomness = dict(seed=0, diff_rank_seed=True) resume = True ``` ### Step-3: Edit the dataset related config The dataset related config is defined in `'../_base_/datasets/imagenet_mae.py'` in `_base_`. We then copy the content of dataset config file into our created file `mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py`. - Then we remove the `'../_base_/datasets/imagenet_mae.py'` in `_base_`. - Set the `dataset_type = 'mmcls.CustomDataset'`, and the path of the custom dataset ` data_root = /dataset/my_custom_dataset`. - Remove the `ann_file` in `train_dataloader`, and edit the `data_prefix` if needed. ```{note} The `CustomDataset` is implemented in MMClassification, and we set the `dataset_type=mmcls.CustomDataset`. ``` And the edited config will be like this: ```python # >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>> _base_ = [ '../_base_/models/mae_vit-base-p16.py', # '../_base_/datasets/imagenet_mae.py', '../_base_/schedules/adamw_coslr-200e_in1k.py', '../_base_/default_runtime.py', ] # custom dataset dataset_type = 'mmcls.CustomDataset' data_root = 'data/custom_dataset/' file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='RandomResizedCrop', size=224, scale=(0.2, 1.0), backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5), dict(type='PackSelfSupInputs', meta_keys=['img_path']) ] # dataset 8 x 512 train_dataloader = dict( batch_size=512, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), dataset=dict( type=dataset_type, data_root=data_root, # ann_file='meta/train.txt', # removed if you don't have the annotation file data_prefix=dict(img_path='./'), pipeline=train_pipeline)) # <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<< # optimizer wrapper optimizer = dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05) optim_wrapper = dict( type='OptimWrapper', optimizer=optimizer, paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=360, by_epoch=True, begin=40, end=400, convert_to_iter_based=True) ] # runtime settings # pre-train for 400 epochs train_cfg = dict(max_epochs=400) default_hooks = dict( logger=dict(type='LoggerHook', interval=100), # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) # randomness randomness = dict(seed=0, diff_rank_seed=True) resume = True ``` By using the edited config file, you are able to train a self-supervised model with MAE algorithm on the custom dataset. ## Train MAE on COCO Dataset ```{note} You need to install MMDetection to use the `mmdet.CocoDataset` follow this [documentation](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/get_started.md) ``` Follow the aforementioned idea, we also present an example of how to train MAE on COCO dataset. The edited file will be like this: ```python # >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>> _base_ = [ '../_base_/models/mae_vit-base-p16.py', # '../_base_/datasets/imagenet_mae.py', '../_base_/schedules/adamw_coslr-200e_in1k.py', '../_base_/default_runtime.py', ] # custom dataset dataset_type = 'mmdet.CocoDataset' data_root = 'data/coco/' file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='RandomResizedCrop', size=224, scale=(0.2, 1.0), backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5), dict(type='PackSelfSupInputs', meta_keys=['img_path']) ] train_dataloader = dict( batch_size=128, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), pipeline=train_pipeline)) # <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<< # optimizer wrapper optimizer = dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05) optim_wrapper = dict( type='OptimWrapper', optimizer=optimizer, paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=360, by_epoch=True, begin=40, end=400, convert_to_iter_based=True) ] # runtime settings # pre-train for 400 epochs train_cfg = dict(max_epochs=400) default_hooks = dict( logger=dict(type='LoggerHook', interval=100), # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) # randomness randomness = dict(seed=0, diff_rank_seed=True) resume = True ``` ## Train SimCLR on Custom Dataset We provide an example of using SimCLR on custom dataset, the main idea is similar to the [Train MAE on Custom Dataset ](#train-mae-on-custom-dataset). The template config is `configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py`. And the edited config is: ```python # >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>> _base_ = [ '../_base_/models/simclr.py', # '../_base_/datasets/imagenet_simclr.py', '../_base_/schedules/lars_coslr-200e_in1k.py', '../_base_/default_runtime.py', ] # custom dataset dataset_type = 'mmcls.CustomDataset' data_root = 'data/custom_dataset/' file_client_args = dict(backend='disk') view_pipeline = [ dict(type='RandomResizedCrop', size=224, backend='pillow'), dict(type='RandomFlip', prob=0.5), dict( type='RandomApply', transforms=[ dict( type='ColorJitter', brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2) ], prob=0.8), dict( type='RandomGrayscale', prob=0.2, keep_channels=True, channel_weights=(0.114, 0.587, 0.2989)), dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5), ] train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='MultiView', num_views=2, transforms=[view_pipeline]), dict(type='PackSelfSupInputs', meta_keys=['img_path']) ] train_dataloader = dict( batch_size=32, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), dataset=dict( type=dataset_type, data_root=data_root, # ann_file='meta/train.txt', data_prefix=dict(img_path='./'), pipeline=train_pipeline)) # <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<< # optimizer optimizer = dict(type='LARS', lr=0.3, momentum=0.9, weight_decay=1e-6) optim_wrapper = dict( type='OptimWrapper', optimizer=optimizer, paramwise_cfg=dict( custom_keys={ 'bn': dict(decay_mult=0, lars_exclude=True), 'bias': dict(decay_mult=0, lars_exclude=True), # bn layer in ResNet block downsample module 'downsample.1': dict(decay_mult=0, lars_exclude=True), })) # runtime settings default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3)) ``` ## Load pre-trained model to speedup convergence To speedup the convergence of the model on your own dataset. You may use the pre-trained model as the initialization for the model's weight. You just need to specify the url of the pre-trained model via command. You can find our provide pre-trained checkpoint here: [Model Zoo](https://mmselfsup.readthedocs.io/en/1.x/model_zoo.html) ```bash bash tools/dist_train.sh ${CONFIG} ${GPUS} --cfg-options model.pretrained=${PRETRAIN} ``` - `CONFIG`: the edited config path - `GPUS`: the number of GPU - `PRETRAIN`: the checkpoint url of pre-trained model provided by MMSelfSup