# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import time import mmcv import torch from mmcv import DictAction from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from mmselfsup.datasets import build_dataloader, build_dataset from mmselfsup.models import build_algorithm from mmselfsup.utils import (get_root_logger, multi_gpu_test, setup_multi_processes, single_gpu_test) def parse_args(): parser = argparse.ArgumentParser( description='MMSelfSup test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--work_dir', type=str, default=None, help='the dir to save logs and models') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument( '--gpu-id', type=int, default=0, help='id of gpu to use ' '(only applicable to non-distributed testing)') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set multi-process settings setup_multi_processes(cfg) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None work_type = args.config.split('/')[1] cfg.work_dir = osp.join('./work_dirs', work_type, osp.splitext(osp.basename(args.config))[0]) cfg.gpu_ids = [args.gpu_id] # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # logger timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'test_{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # build the dataloader dataset = build_dataset(cfg.data.val) if 'imgs_per_gpu' in cfg.data: logger.warning('"imgs_per_gpu" is deprecated. ' 'Please use "samples_per_gpu" instead') if 'samples_per_gpu' in cfg.data: logger.warning( f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and ' f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"' f'={cfg.data.imgs_per_gpu} is used in this experiments') else: logger.warning( 'Automatically set "samples_per_gpu"="imgs_per_gpu"=' f'{cfg.data.imgs_per_gpu} in this experiments') cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu data_loader = build_dataloader( dataset, samples_per_gpu=cfg.data.samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_algorithm(cfg.model) load_checkpoint(model, args.checkpoint, map_location='cpu') if not distributed: model = MMDataParallel(model, device_ids=cfg.gpu_ids) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader) # dict{key: np.ndarray} rank, _ = get_dist_info() if rank == 0: dataset.evaluate(outputs, logger, topk=(1, 5)) if __name__ == '__main__': main()