# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmengine.data import InstanceData from mmselfsup.core import SelfSupDataSample from mmselfsup.models.algorithms import NPID backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict( type='LinearNeck', in_channels=512, out_channels=2, with_avg_pool=True) head = dict( type='ContrastiveHead', loss=dict(type='mmcls.CrossEntropyLoss'), temperature=0.07) memory_bank = dict(type='SimpleMemory', length=8, feat_dim=2, momentum=0.5) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_npid(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'bgr_to_rgb': True } alg = NPID( backbone=backbone, neck=neck, head=head, memory_bank=memory_bank, data_preprocessor=copy.deepcopy(data_preprocessor)) fake_data = [{ 'inputs': [torch.randn((3, 224, 224))], 'data_sample': SelfSupDataSample( sample_idx=InstanceData(value=torch.randint(0, 7, (1, )))) } for _ in range(2)] fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data) fake_loss = alg(fake_inputs, fake_data_samples, mode='loss') assert fake_loss['loss'] > -1 # test extract fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor') assert fake_feats[0].size() == torch.Size([2, 512, 7, 7])