# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmengine.data import InstanceData from mmselfsup.data import SelfSupDataSample from mmselfsup.models.algorithms import DeepCluster num_classes = 5 with_sobel = True, backbone = dict( type='ResNetSobel', depth=18, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict(type='AvgPool2dNeck') head = dict( type='ClsHead', loss=dict(type='mmcls.CrossEntropyLoss'), with_avg_pool=False, # already has avgpool in the neck in_channels=512, num_classes=num_classes) @pytest.mark.skipif( not torch.cuda.is_available() or platform.system() == 'Windows', reason='CUDA is not available or Windows mem limit') def test_deepcluster(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'bgr_to_rgb': True } alg = DeepCluster( backbone=backbone, neck=neck, head=head, data_preprocessor=copy.deepcopy(data_preprocessor)) assert alg.num_classes == num_classes assert hasattr(alg, 'neck') assert hasattr(alg, 'head') fake_data_sample = SelfSupDataSample() clustering_label = InstanceData(clustering_label=torch.tensor([1])) fake_data_sample.pseudo_label = clustering_label fake_data = [{ 'inputs': [torch.randn(3, 224, 224)], 'data_sample': fake_data_sample } for _ in range(2)] fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data) fake_loss = alg(fake_inputs, fake_data_samples, mode='loss') assert fake_loss['loss'] > 0 # test extract fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor') assert fake_feats[0].size() == torch.Size([2, 512, 7, 7])