# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.data import SelfSupDataSample from mmselfsup.models.algorithms.simclr import SimCLR backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict( type='NonLinearNeck', # SimCLR non-linear neck in_channels=512, hid_channels=2, out_channels=2, num_layers=2, with_avg_pool=True) head = dict( type='ContrastiveHead', loss=dict(type='mmcls.CrossEntropyLoss'), temperature=0.1) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_simclr(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'bgr_to_rgb': True, } alg = SimCLR( backbone=backbone, neck=neck, head=head, data_preprocessor=copy.deepcopy(data_preprocessor)) fake_data = [{ 'inputs': [torch.randn((3, 224, 224)), torch.randn((3, 224, 224))], 'data_sample': SelfSupDataSample() } for _ in range(2)] fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data) # test extract fake_feat = alg(fake_inputs, fake_data_samples, mode='tensor') assert fake_feat[0].size() == torch.Size([2, 512, 7, 7])