# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.data import SelfSupDataSample from mmselfsup.models.algorithms.swav import SwAV nmb_crops = [2, 6] backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN'), zero_init_residual=True) neck = dict( type='SwAVNeck', in_channels=512, hid_channels=2, out_channels=2, norm_cfg=dict(type='BN1d'), with_avg_pool=True) head = dict( type='SwAVHead', loss=dict( type='SwAVLoss', feat_dim=2, # equal to neck['out_channels'] epsilon=0.05, temperature=0.1, num_crops=nmb_crops)) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_swav(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'bgr_to_rgb': True } alg = SwAV( backbone=backbone, neck=neck, head=head, data_preprocessor=copy.deepcopy(data_preprocessor)) fake_data = [{ 'inputs': [ torch.randn((3, 224, 224)), torch.randn((3, 224, 224)), torch.randn((3, 96, 96)), torch.randn((3, 96, 96)), torch.randn((3, 96, 96)), torch.randn((3, 96, 96)), torch.randn((3, 96, 96)), torch.randn((3, 96, 96)) ], 'data_sample': SelfSupDataSample() } for _ in range(2)] fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data) fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss') assert isinstance(fake_outputs['loss'].item(), float) fake_feat = alg(fake_batch_inputs, fake_data_samples, mode='tensor') assert list(fake_feat[0].shape) == [2, 512, 7, 7]