# Copyright (c) OpenMMLab. All rights reserved. import logging import tempfile from unittest.mock import MagicMock import torch import torch.nn as nn from mmcv.parallel import MMDataParallel from mmcv.runner import build_runner from torch.utils.data import Dataset from mmselfsup.core.optimizer import build_optimizer from mmselfsup.utils import Extractor class ExampleDataset(Dataset): def __getitem__(self, idx): results = dict(img=torch.tensor([1]), img_metas=dict()) return results def __len__(self): return 1 class ExampleModel(nn.Module): def __init__(self): super(ExampleModel, self).__init__() self.test_cfg = None self.conv = nn.Conv2d(3, 3, 3) self.neck = nn.Identity() def forward(self, img, test_mode=False, **kwargs): return img def train_step(self, data_batch, optimizer): loss = self.forward(**data_batch) return dict(loss=loss) def test_extractor(): test_dataset = ExampleDataset() test_dataset.evaluate = MagicMock(return_value=dict(test='success')) runner_cfg = dict(type='EpochBasedRunner', max_epochs=2) optim_cfg = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005) extractor = Extractor( test_dataset, 1, 0, dist_mode=False, persistent_workers=False) # test extractor with tempfile.TemporaryDirectory() as tmpdir: model = MMDataParallel(ExampleModel()) optimizer = build_optimizer(model, optim_cfg) runner = build_runner( runner_cfg, default_args=dict( model=model, optimizer=optimizer, work_dir=tmpdir, logger=logging.getLogger())) features = extractor(runner) assert features.shape == (1, 1)