#!/bin/bash set -x set -e WORK_DIR=$1 FEAT_LIST=${2:-"feat5"} # "feat1 feat2 feat3 feat4 feat5" TRAIN_SVM_FLAG=true TEST_SVM_FLAG=true DATA="data/VOCdevkit/VOC2007/SVMLabels" # config svm costs="1.0,10.0,100.0" for feat in $FEAT_LIST; do echo "For feature: $feat" 2>&1 | tee -a $WORK_DIR/logs/eval_svm.log # train svm if $TRAIN_SVM_FLAG; then rm -rf $WORK_DIR/svm mkdir -p $WORK_DIR/svm/voc07_${feat} echo "training svm ..." python benchmarks/svm_tools/train_svm_kfold_parallel.py \ --data_file $WORK_DIR/features/voc07_trainval_${feat}.npy \ --targets_data_file $DATA/train_labels.npy \ --costs_list $costs \ --output_path $WORK_DIR/svm/voc07_${feat} fi # test svm if $TEST_SVM_FLAG; then echo "testing svm ..." python benchmarks/svm_tools/test_svm.py \ --data_file $WORK_DIR/features/voc07_test_${feat}.npy \ --json_targets $DATA/test_targets.json \ --targets_data_file $DATA/test_labels.npy \ --costs_list $costs \ --generate_json 1 \ --output_path $WORK_DIR/svm/voc07_${feat} 2>&1 | tee -a $WORK_DIR/logs/eval_svm.log fi done