# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # ################################################################################ """ SVM training using 3-fold cross-validation. Relevant transfer tasks: Image Classification VOC07 and COCO2014. """ from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import argparse import logging import numpy as np import os import pickle import sys from tqdm import tqdm from sklearn.svm import LinearSVC from sklearn.model_selection import cross_val_score import svm_helper import time # create the logger FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(__name__) def train_svm(opts): assert os.path.exists(opts.data_file), "Data file not found. Abort!" if not os.path.exists(opts.output_path): os.makedirs(opts.output_path) features, targets = svm_helper.load_input_data(opts.data_file, opts.targets_data_file) # normalize the features: N x 9216 (example shape) features = svm_helper.normalize_features(features) # parse the cost values for training the SVM on costs_list = svm_helper.parse_cost_list(opts.costs_list) #logger.info('Training SVM for costs: {}'.format(costs_list)) # classes for which SVM training should be done if opts.cls_list: cls_list = [int(cls) for cls in opts.cls_list.split(",")] else: num_classes = targets.shape[1] cls_list = range(num_classes) #logger.info('Training SVM for classes: {}'.format(cls_list)) for cls_idx in tqdm(range(len(cls_list))): cls = cls_list[cls_idx] for cost_idx in range(len(costs_list)): start = time.time() cost = costs_list[cost_idx] out_file, ap_out_file = svm_helper.get_svm_train_output_files( cls, cost, opts.output_path) if os.path.exists(out_file) and os.path.exists(ap_out_file): logger.info('SVM model exists: {}'.format(out_file)) logger.info('AP file exists: {}'.format(ap_out_file)) else: #logger.info('Training model with the cost: {}'.format(cost)) clf = LinearSVC( C=cost, class_weight={ 1: 2, -1: 1 }, intercept_scaling=1.0, verbose=0, penalty='l2', loss='squared_hinge', tol=0.0001, dual=True, max_iter=2000, ) cls_labels = targets[:, cls].astype(dtype=np.int32, copy=True) # meaning of labels in VOC/COCO original loaded target files: # label 0 = not present, set it to -1 as svm train target # label 1 = present. Make the svm train target labels as -1, 1. cls_labels[np.where(cls_labels == 0)] = -1 #num_positives = len(np.where(cls_labels == 1)[0]) #num_negatives = len(cls_labels) - num_positives #logger.info('cls: {} has +ve: {} -ve: {} ratio: {}'.format( # cls, num_positives, num_negatives, # float(num_positives) / num_negatives) #) #logger.info('features: {} cls_labels: {}'.format( # features.shape, cls_labels.shape)) ap_scores = cross_val_score( clf, features, cls_labels, cv=3, scoring='average_precision') clf.fit(features, cls_labels) #logger.info('cls: {} cost: {} AP: {} mean:{}'.format( # cls, cost, ap_scores, ap_scores.mean())) #logger.info('Saving cls cost AP to: {}'.format(ap_out_file)) np.save(ap_out_file, np.array([ap_scores.mean()])) #logger.info('Saving SVM model to: {}'.format(out_file)) with open(out_file, 'wb') as fwrite: pickle.dump(clf, fwrite) print("time: {:.4g} s".format(time.time() - start)) def main(): parser = argparse.ArgumentParser(description='SVM model training') parser.add_argument( '--data_file', type=str, default=None, help="Numpy file containing image features") parser.add_argument( '--targets_data_file', type=str, default=None, help="Numpy file containing image labels") parser.add_argument( '--output_path', type=str, default=None, help="path where to save the trained SVM models") parser.add_argument( '--costs_list', type=str, default="0.01,0.1", help="comma separated string containing list of costs") parser.add_argument( '--random_seed', type=int, default=100, help="random seed for SVM classifier training") parser.add_argument( '--cls_list', type=str, default=None, help="comma separated string list of classes to train") if len(sys.argv) == 1: parser.print_help() sys.exit(1) opts = parser.parse_args() #logger.info(opts) train_svm(opts) if __name__ == '__main__': main()