# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmselfsup.models.algorithms import DeepCluster num_classes = 5 with_sobel = True, backbone = dict( type='ResNet', depth=18, in_channels=2, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict(type='AvgPool2dNeck') head = dict( type='ClsHead', with_avg_pool=False, # already has avgpool in the neck in_channels=512, num_classes=num_classes) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_deepcluster(): with pytest.raises(AssertionError): alg = DeepCluster( backbone=backbone, with_sobel=with_sobel, neck=neck, head=None) alg = DeepCluster( backbone=backbone, with_sobel=with_sobel, neck=neck, head=head) assert alg.num_classes == num_classes assert hasattr(alg, 'sobel_layer') assert hasattr(alg, 'neck') assert hasattr(alg, 'head') fake_input = torch.randn((2, 3, 224, 224)) fake_labels = torch.ones(2, dtype=torch.long) fake_out = alg.forward(fake_input, mode='test') assert 'head0' in fake_out assert fake_out['head0'].size() == torch.Size([2, num_classes]) fake_out = alg.forward_train(fake_input, fake_labels) alg.set_reweight(fake_labels) assert fake_out['loss'].item() > 0