# dataset settings data_source = 'ImageNet' dataset_type = 'SingleViewDataset' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [ dict(type='RandomResizedCrop', size=224), dict(type='RandomHorizontalFlip'), ] test_pipeline = [ dict(type='Resize', size=256), dict(type='CenterCrop', size=224), ] # prefetch prefetch = False if not prefetch: train_pipeline.extend( [dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) test_pipeline.extend( [dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) # dataset summary data = dict( imgs_per_gpu=32, # total 32x8=256, 8GPU linear cls workers_per_gpu=4, train=dict( type=dataset_type, data_source=dict( type=data_source, data_prefix='data/imagenet/train', ann_file='data/imagenet/meta/train.txt', ), pipeline=train_pipeline, prefetch=prefetch), val=dict( type=dataset_type, data_source=dict( type=data_source, data_prefix='data/imagenet/val', ann_file='data/imagenet/meta/val.txt', ), pipeline=test_pipeline, prefetch=prefetch)) evaluation = dict(interval=10, topk=(1, 5))