from mmcv.runner import OptimizerHook class DistOptimizerHook(OptimizerHook): def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.update_interval = update_interval def before_run(self, runner): runner.optimizer.zero_grad() def after_train_iter(self, runner): runner.outputs['loss'] /= self.update_interval runner.outputs['loss'].backward() if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step() runner.optimizer.zero_grad()