# 模型库 所有模型和部分基准测试如下。 ## 预训练模型 | 算法 | 配置文件 | 下载链接 | | ------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | [Relative Location](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/README.md) | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20220225-84784688.pth) \| [log](https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20220211_124808.log.json) | | [Rotation Prediction](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/README.md) | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20220225-5b9f06a0.pth) \| [log](https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20220215_185303.log.json) | | [DeepCluster](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/README.md) | [deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k-bb8681e2.pth) | | [NPID](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/README.md) | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k_20220225-5fbbda2a.pth) \| [log](https://download.openmmlab.com/mmselfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k_20220215_185513.log.json) | | [ODC](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/README.md) | [odc_resnet50_8xb64-steplr-440e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k_20220225-a755d9c0.pth) \| [log](https://download.openmmlab.com/mmselfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k_20220215_235245.log.json) | | [SimCLR](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/README.md) | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k_20220428-46ef6bb9.pth) \| [log](https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k_20220411_182427.log.json) | | | [simclr_resnet50_16xb256-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_16xb256-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_16xb256-coslr-200e_in1k_20220428-8c24b063.pth) \| [log](https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_16xb256-coslr-200e_in1k_20220423_205520.log.json) | | [MoCo v2](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/README.md) | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k_20220225-89e03af4.pth) \| [log](https://download.openmmlab.com/mmselfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k_20220210_110905.log.json) | | [BYOL](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/README.md) | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k_20220225-5c8b2c2e.pth) \| [log](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k_20220214_115709.log.json) | | | [byol_resnet50_16xb256-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_16xb256-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_16xb256-coslr-200e_in1k_20220527-b6f8eedd.pth) \| [log](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_16xb256-coslr-200e_in1k_20220509_213052.log.json) | | | [byol_resnet50_8xb32-accum16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k_20220225-a0daa54a.pth) \| [log](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k_20220210_095852.log.json) | | [SwAV](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/README.md) | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | [model](https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220225-0497dd5d.pth) \| [log](https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220211_061131.log.json) | | [DenseCL](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/README.md) | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k_20220225-8c7808fe.pth) \| [log](https://download.openmmlab.com/mmselfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k_20220215_041207.log.json) | | [SimSiam](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/README.md) | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20220225-68a88ad8.pth) \| [log](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20220210_195405.log.json) | | | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20220225-2f488143.pth) \| [log](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20220210_195402.log.json) | | [BarlowTwins](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/barlowtwins/README.md) | [barlowtwins_resnet50_8xb256-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220419-5ae15f89.pth) \| [log](https://download.openmmlab.com/mmselfsup/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220413_111555.log.json) | | [MoCo v3](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov3/README.md) | [mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov3/mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224.py) | [model](https://download.openmmlab.com/mmselfsup/moco/mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224_20220225-e31238dd.pth) \| [log](https://download.openmmlab.com/mmselfsup/moco/mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224_20220222_160222.log.json) | | [MAE](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/README.md) | [mae_vit-base-p16_8xb512-coslr-400e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k-224_20220223-85be947b.pth) \| [log](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-300e_in1k-224_20220210_140925.log.json) | | [SimMIM](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simmim/README.md) | [simmim_swin-base_16xb128-coslr-100e_in1k-192](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192.py) | [model](https://download.openmmlab.com/mmselfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192_20220316-1d090125.pth) \| [log](https://download.openmmlab.com/mmselfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192_20220316-1d090125.log.json) | | [CAE](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simmim/README.md) | [cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/cae/cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/cae/cae_vit-base-p16_16xb256-coslr-300e_in1k-224_20220427-4c786349.pth) \| [log](https://download.openmmlab.com/mmselfsup/cae/cae_vit-base-p16_16xb256-coslr-300e_in1k-224_20220427-4c786349.log.json) | 备注: - 训练细节记录在配置文件名中。 - 可以点击算法名获得更加全面的信息。 ## 基准测试 在下列表格中,我们只展示了基于 ImageNet 数据集的线性评估,COCO17 数据集的目标检测和实例分割以及 PASCAL VOC12 Aug 数据集的语义分割任务,您可以点击预训练模型表格中的算法名查看更多基准测试结果。 ### ImageNet 线性评估 如果没有特殊说明,下列实验采用 [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf) 的设置,或者采用的训练设置写在备注中。 | 算法 | 配置文件 | 备注 | Top-1 (%) | | ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------- | --------- | | Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | | 38.78 | | Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | | 48.12 | | DeepCluster | [deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py) | | 46.92 | | NPID | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | | 58.97 | | ODC | [odc_resnet50_8xb64-steplr-440e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k.py) | | 53.43 | | SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | SimSiam 论文设置 | 62.56 | | | [simclr_resnet50_16xb256-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_16xb256-coslr-200e_in1k.py) | SimSiam 论文设置 | 66.66 | | MoCo v2 | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | | 67.58 | | BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | SimSiam 论文设置 | 71.72 | | | [byol_resnet50_16xb256-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_16xb256-coslr-200e_in1k.py) | SimSiam 论文设置 | 71.88 | | | [byol_resnet50_8xb32-accum16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k.py) | SimSiam 论文设置 | 72.93 | | SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | SwAV 论文设置 | 70.47 | | DenseCL | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | | 63.62 | | SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | SimSiam 论文设置 | 68.28 | | | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | SimSiam 论文设置 | 69.84 | | Barlow Twins | [barlowtwins_resnet50_8xb256-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k.py) | Barlow Twins 论文设置 | 71.66 | | MoCo v3 | [mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov3/mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224.py) | MoCo v3 论文设置 | 73.19 | ### ImageNet 微调 | 算法 | 配置文件 | 备注 | Top-1 (%) | | ------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---- | --------- | | MAE | [mae_vit-base-p16_8xb512-coslr-400e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py) | | 83.1 | | SimMIM | [simmim_swin-base_16xb128-coslr-100e_in1k-192](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192.py) | | 82.9 | | CAE | [cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/cae/cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k.py) | | 83.2 | ### COCO17 目标检测和实例分割 在 COCO17 数据集的目标检测和实例分割任务中,我们选用 [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf) 的评估设置,基于 Mask-RCNN FPN 网络架构,下列结果通过同样的 [配置文件](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/mmdetection/coco/mask_rcnn_r50_fpn_mstrain_1x_coco.py) 训练得到。 | 算法 | 配置文件 | mAP (Box) | mAP (Mask) | | ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------- | ---------- | | Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | 37.5 | 33.7 | | Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | 37.9 | 34.2 | | NPID | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | 38.5 | 34.6 | | SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | 38.7 | 34.9 | | MoCo v2 | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | 40.2 | 36.1 | | BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | 40.9 | 36.8 | | SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | 40.2 | 36.3 | | SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 38.6 | 34.6 | | | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 38.8 | 34.9 | ### Pascal VOC12 Aug 语义分割 在 Pascal VOC12 Aug 语义分割任务中,我们选用 [MMSeg](https://github.com/open-mmlab/mmsegmentation) 的评估设置, 基于 FCN 网络架构, 下列结果通过同样的 [配置文件](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_512x512_20k_voc12aug.py) 训练得到。 | 算法 | 配置文件 | mIOU | | ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- | | Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | 63.49 | | Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | 64.31 | | NPID | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | 65.45 | | SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | 64.03 | | MoCo v2 | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | 67.55 | | BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | 67.16 | | SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | 63.73 | | DenseCL | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | 69.47 | | SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 48.35 | | | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 46.27 |