# dataset settings dataset_type = 'mmcls.ImageNet' data_root = 'data/imagenet/' file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='RandomResizedCrop', size=192, scale=(0.67, 1.0), ratio=(3. / 4., 4. / 3.)), dict(type='RandomFlip', prob=0.5), dict( type='SimMIMMaskGenerator', input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6), dict( type='PackSelfSupInputs', algorithm_keys=['mask'], meta_keys=['img_path']) ] train_dataloader = dict( batch_size=256, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='meta/train.txt', data_prefix=dict(img_path='train/'), pipeline=train_pipeline)) # for visualization vis_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(192, 192), backend='pillow'), dict( type='SimMIMMaskGenerator', input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6), dict( type='PackSelfSupInputs', algorithm_keys=['mask'], meta_keys=['img_path']) ]