dataset_type = 'ImageNet' data_root = 'data/imagenet/' data_preprocessor = dict( num_classes=1000, mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', scale=224, backend='pillow'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackClsInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'), dict(type='CenterCrop', crop_size=224), dict(type='PackClsInputs') ] train_dataloader = dict( batch_size=2048, num_workers=4, dataset=dict( type='ImageNet', data_root='data/imagenet/', ann_file='meta/train.txt', data_prefix='train', pipeline=[ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', scale=224, backend='pillow'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackClsInputs') ]), sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), persistent_workers=True, pin_memory=True, drop_last=True) val_dataloader = dict( batch_size=32, num_workers=4, dataset=dict( type='ImageNet', data_root='data/imagenet/', ann_file='meta/val.txt', data_prefix='val', pipeline=[ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'), dict(type='CenterCrop', crop_size=224), dict(type='PackClsInputs') ]), sampler=dict(type='DefaultSampler', shuffle=False), persistent_workers=True, drop_last=False) val_evaluator = dict(type='Accuracy', topk=(1, 5)) test_dataloader = dict( pin_memory=True, collate_fn=dict(type='default_collate'), batch_size=32, num_workers=4, dataset=dict( type='CustomDataset', data_root='data/cue-conflict', pipeline=[ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'), dict(type='CenterCrop', crop_size=224), dict(type='PackClsInputs') ]), sampler=dict(type='DefaultSampler', shuffle=False), persistent_workers=True, drop_last=False) test_evaluator = dict( type='mmselfsup.ShapeBiasMetric', csv_dir='work_dirs/shape_bias', model_name='mae') optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict(type='mmselfsup.LARS', lr=6.4, weight_decay=0.0)) param_scheduler = [ dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=10, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=80, by_epoch=True, begin=10, end=90, eta_min=0.0, convert_to_iter_based=True) ] train_cfg = dict(by_epoch=True, max_epochs=90, val_interval=1) val_cfg = dict() test_cfg = dict() auto_scale_lr = dict(base_batch_size=1024) default_scope = 'mmcls' default_hooks = dict( timer=dict(type='IterTimerHook', _scope_='mmcls'), logger=dict(type='LoggerHook', interval=10, _scope_='mmcls'), param_scheduler=dict(type='ParamSchedulerHook', _scope_='mmcls'), checkpoint=dict( type='CheckpointHook', interval=1, _scope_='mmcls', max_keep_ckpts=3), sampler_seed=dict(type='DistSamplerSeedHook', _scope_='mmcls'), visualization=dict( type='VisualizationHook', enable=False, _scope_='mmcls')) env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl')) vis_backends = [dict(type='LocalVisBackend', _scope_='mmcls')] visualizer = dict( type='ClsVisualizer', vis_backends=[dict(type='LocalVisBackend')], _scope_='mmcls') log_level = 'INFO' load_from = '' resume = False randomness = dict(seed=0, deterministic=False, diff_rank_seed=True) model = dict( type='ImageClassifier', backbone=dict( type='VisionTransformer', arch='base', img_size=224, patch_size=16, frozen_stages=12, avg_token=False, final_norm=True, init_cfg=dict(type='Pretrained', checkpoint='')), neck=dict(type='mmselfsup.ClsBatchNormNeck', input_features=768), head=dict( type='VisionTransformerClsHead', num_classes=1000, in_channels=768, loss=dict(type='CrossEntropyLoss'), init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.01)]), data_preprocessor=dict( num_classes=1000, mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)) optimizer = dict(type='mmselfsup.LARS', lr=6.4, weight_decay=0.0, momentum=0.9) launcher = 'pytorch' work_dir = './work_dirs/shape_bias'