# Copyright (c) OpenMMLab. All rights reserved. import copy import platform from unittest.mock import MagicMock import pytest import torch import mmselfsup from mmselfsup.core.data_structures.selfsup_data_sample import \ SelfSupDataSample from mmselfsup.models.algorithms.densecl import DenseCL queue_len = 32 feat_dim = 2 momentum = 0.999 loss_lambda = 0.5 backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict( type='DenseCLNeck', in_channels=512, hid_channels=2, out_channels=2, num_grid=None) head = dict(type='ContrastiveHead', temperature=0.2) loss = dict(type='mmcls.CrossEntropyLoss') def mock_batch_shuffle_ddp(img): return img, 0 def mock_batch_unshuffle_ddp(img, mock_input): return img def mock_concat_all_gather(img): return img @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_densecl(): preprocess_cfg = { 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'to_rgb': True } with pytest.raises(AssertionError): alg = DenseCL( backbone=backbone, neck=None, head=head, loss=loss, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = DenseCL( backbone=backbone, neck=neck, head=None, loss=loss, preprocess_cfg=copy.deepcopy(preprocess_cfg)) with pytest.raises(AssertionError): alg = DenseCL( backbone=backbone, neck=neck, head=head, loss=None, preprocess_cfg=copy.deepcopy(preprocess_cfg)) alg = DenseCL( backbone=backbone, neck=neck, head=head, loss=loss, queue_len=queue_len, feat_dim=feat_dim, momentum=momentum, loss_lambda=loss_lambda, preprocess_cfg=copy.deepcopy(preprocess_cfg)) assert alg.queue.size() == torch.Size([feat_dim, queue_len]) assert alg.queue2.size() == torch.Size([feat_dim, queue_len]) mmselfsup.models.algorithms.densecl.batch_shuffle_ddp = MagicMock( side_effect=mock_batch_shuffle_ddp) mmselfsup.models.algorithms.densecl.batch_unshuffle_ddp = MagicMock( side_effect=mock_batch_unshuffle_ddp) mmselfsup.models.algorithms.densecl.concat_all_gather = MagicMock( side_effect=mock_concat_all_gather) fake_data = [{ 'inputs': [torch.randn((3, 224, 224)), torch.randn((3, 224, 224))], 'data_sample': SelfSupDataSample(), } for _ in range(2)] fake_outputs = alg(fake_data, return_loss=True) assert isinstance(fake_outputs['loss'].item(), float) assert isinstance(fake_outputs['log_vars']['loss_single'], float) assert isinstance(fake_outputs['log_vars']['loss_dense'], float) assert fake_outputs['log_vars']['loss_single'] > 0 assert fake_outputs['log_vars']['loss_dense'] > 0 assert alg.queue_ptr.item() == 2 assert alg.queue2_ptr.item() == 2 fake_inputs, fake_data_samples = alg.preprocss_data(fake_data) fake_feat = alg.extract_feat( inputs=fake_inputs, data_samples=fake_data_samples) assert list(fake_feat[0].shape) == [2, 512, 7, 7] fake_outputs = alg(fake_data, return_loss=False) assert 'q_grid' in fake_outputs assert 'value' in fake_outputs.q_grid assert list(fake_outputs.q_grid.value.shape) == [2, 512, 49]