# dataset settings data_source = 'ImageNet' dataset_type = 'SingleViewDataset' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [ dict( type='RandomResizedCropAndInterpolationWithTwoPic', size=224, scale=(0.5, 1.0), ratio=(0.75, 1.3333), interpolation='bicubic'), dict(type='RandomHorizontalFlip') ] # prefetch prefetch = False if not prefetch: train_pipeline.extend( [dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) train_pipeline.append(dict(type='MaskFeatMaskGenerator', mask_ratio=0.4)) # dataset summary data = dict( samples_per_gpu=256, workers_per_gpu=8, train=dict( type=dataset_type, data_source=dict( type=data_source, data_prefix='data/imagenet/train', ann_file='data/imagenet/meta/train.txt'), pipeline=train_pipeline, prefetch=prefetch))