# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmselfsup.models import MoCoV3 backbone = dict( type='VisionTransformer', arch='mocov3-small', # embed_dim = 384 img_size=224, patch_size=16, stop_grad_conv1=True) neck = dict( type='NonLinearNeck', in_channels=384, hid_channels=2, out_channels=2, num_layers=2, with_bias=False, with_last_bn=True, with_last_bn_affine=False, with_last_bias=False, with_avg_pool=False, vit_backbone=True) head = dict( type='MoCoV3Head', predictor=dict( type='NonLinearNeck', in_channels=2, hid_channels=2, out_channels=2, num_layers=2, with_bias=False, with_last_bn=True, with_last_bn_affine=False, with_last_bias=False, with_avg_pool=False), temperature=0.2) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_mocov3(): with pytest.raises(AssertionError): alg = MoCoV3(backbone=backbone, neck=None, head=head) with pytest.raises(AssertionError): alg = MoCoV3(backbone=backbone, neck=neck, head=None) alg = MoCoV3(backbone, neck, head) alg.init_weights() alg.momentum_update() fake_input = torch.randn((2, 3, 224, 224)) fake_backbone_out = alg.forward(fake_input, mode='extract') assert fake_backbone_out[0][0].size() == torch.Size([2, 384, 14, 14]) assert fake_backbone_out[0][1].size() == torch.Size([2, 384])