# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmselfsup.models.algorithms import SwAV nmb_crops = [2, 6] backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN'), zero_init_residual=True) neck = dict( type='SwAVNeck', in_channels=512, hid_channels=2, out_channels=2, norm_cfg=dict(type='BN1d'), with_avg_pool=True) head = dict( type='SwAVHead', feat_dim=2, # equal to neck['out_channels'] epsilon=0.05, temperature=0.1, num_crops=nmb_crops) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_swav(): with pytest.raises(AssertionError): alg = SwAV(backbone=backbone, neck=neck, head=None) with pytest.raises(AssertionError): alg = SwAV(backbone=backbone, neck=None, head=head) alg = SwAV(backbone=backbone, neck=neck, head=head) fake_input = torch.randn((2, 3, 224, 224)) fake_backbone_out = alg.extract_feat(fake_input) assert fake_backbone_out[0].size() == torch.Size([2, 512, 7, 7]) fake_input = [ torch.randn((2, 3, 224, 224)), torch.randn((2, 3, 224, 224)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), ] fake_out = alg.forward_train(fake_input) assert fake_out['loss'].item() > 0