# Copyright (c) OpenMMLab. All rights reserved. import logging import tempfile from unittest.mock import MagicMock import torch import torch.nn as nn from mmcv.parallel import MMDataParallel from mmcv.runner import build_runner from torch.utils.data import DataLoader, Dataset from mmselfsup.core.hooks import SimSiamHook from mmselfsup.core.optimizer import build_optimizer class ExampleDataset(Dataset): def __getitem__(self, idx): results = dict(img=torch.tensor([1]), img_metas=dict()) return results def __len__(self): return 1 class ExampleModel(nn.Module): def __init__(self): super(ExampleModel, self).__init__() self.test_cfg = None self.conv = nn.Conv2d(3, 3, 3) self.predictor = nn.Linear(2, 1) def forward(self, img, img_metas, test_mode=False, **kwargs): return img def train_step(self, data_batch, optimizer): loss = self.forward(**data_batch) return dict(loss=loss) def test_simsiam_hook(): test_dataset = ExampleDataset() test_dataset.evaluate = MagicMock(return_value=dict(test='success')) data_loader = DataLoader( test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) runner_cfg = dict(type='EpochBasedRunner', max_epochs=2) optim_cfg = dict( type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005, paramwise_options={'predictor': dict(fix_lr=True)}) lr_config = dict(policy='CosineAnnealing', min_lr=0.) # test SimSiamHook with tempfile.TemporaryDirectory() as tmpdir: model = MMDataParallel(ExampleModel()) optimizer = build_optimizer(model, optim_cfg) simsiam_hook = SimSiamHook(True, 0.05) runner = build_runner( runner_cfg, default_args=dict( model=model, optimizer=optimizer, work_dir=tmpdir, logger=logging.getLogger())) runner.register_training_hooks(lr_config) runner.register_hook(simsiam_hook) runner.run([data_loader], [('train', 1)]) for param_group in runner.optimizer.param_groups: if 'fix_lr' in param_group and param_group['fix_lr']: assert param_group['lr'] == 0.05 else: assert param_group['lr'] != 0.05