Collections: - Name: SwAV Metadata: Training Data: ImageNet-1k Training Techniques: - LARS Training Resources: 8x V100 GPUs Architecture: - ResNet - SwAV Paper: URL: https://arxiv.org/abs/2006.09882 Title: "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments" README: configs/selfsup/swav/README.md Models: - Name: swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96 In Collection: SwAV Metadata: Epochs: 200 Batch Size: 256 Results: - Task: Self-Supervised Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 70.55 Config: configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py Weights: https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20211213-0028900c.pth