# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.core import SelfSupDataSample from mmselfsup.models.algorithms import SimSiam backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN'), zero_init_residual=True) neck = dict( type='NonLinearNeck', in_channels=512, hid_channels=2, out_channels=2, num_layers=3, with_last_bn_affine=False, with_avg_pool=True, norm_cfg=dict(type='BN1d')) head = dict( type='LatentPredictHead', loss=dict(type='CosineSimilarityLoss'), predictor=dict( type='NonLinearNeck', in_channels=2, hid_channels=2, out_channels=2, with_avg_pool=False, with_last_bn=False, with_last_bias=True, norm_cfg=dict(type='BN1d'))) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_simsiam(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'bgr_to_rgb': True, } alg = SimSiam( backbone=backbone, neck=neck, head=head, data_preprocessor=copy.deepcopy(data_preprocessor)) fake_data = [{ 'inputs': [torch.randn((3, 224, 224)), torch.randn((3, 224, 224))], 'data_sample': SelfSupDataSample() } for _ in range(2)] fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data) fake_loss = alg(fake_inputs, fake_data_samples, mode='loss') assert fake_loss['loss'] > -1 # test extract fake_feat = alg(fake_inputs, fake_data_samples, mode='tensor') assert fake_feat[0].size() == torch.Size([2, 512, 7, 7])