# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmselfsup.models.algorithms import NPID backbone = dict( type='ResNet', depth=50, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict( type='LinearNeck', in_channels=2048, out_channels=4, with_avg_pool=True) head = dict(type='ContrastiveHead', temperature=0.07) memory_bank = dict(type='SimpleMemory', length=8, feat_dim=4, momentum=0.5) @pytest.mark.skipif( not torch.cuda.is_available(), reason='CUDA is not available.') def test_npid(): with pytest.raises(AssertionError): alg = NPID(backbone=backbone, neck=neck, head=head, memory_bank=None) with pytest.raises(AssertionError): alg = NPID( backbone=backbone, neck=neck, head=None, memory_bank=memory_bank) alg = NPID( backbone=backbone, neck=neck, head=head, memory_bank=memory_bank) fake_input = torch.randn((16, 3, 224, 224)) fake_backbone_out = alg.extract_feat(fake_input) assert fake_backbone_out[0].size() == torch.Size([16, 2048, 7, 7])